
CHAPTER 1

���� Chapter Take-Aways (Answer Format)

Q1: Why is software security important?
→ Because attackers often target software flaws over hardware or network vulnerabilities.
The app layer is the new battleground.

Q2: How does security fit into the SDLC?
→ Traditional SDLC often skips security or adds it too late. The SDL (Security Development
Lifecycle) integrates security into every phase.

Q3: What’s the difference between quality and security in code?
→ Quality ensures the program works as intended. Security ensures it can't be abused or
exploited, even when misused.

Q4: What are the goals of the SDL?
→ Enforce Confidentiality, Integrity, and Availability (CIA Triad) while reducing
risk through secure practices.

Q5: When and how are threat modeling and risk analysis used?
→ Early, ideally during requirements and design phases. Used to anticipate
vulnerabilities before they’re built in.

�������� Core Concepts

• Software is a strategic asset – it runs the world (finance, healthcare, government).

• Security flaws are exploited faster than ever, often within hours of discovery.

• Attackers are better organized and faster than most dev teams.

• SDL is proactive, not reactive.

��� SDL vs SDLC Chart

Aspect SDLC SDL

Focus Functionality Security

When security added Afterthought or at testing From the beginning

Risk mgmt Minimal Integrated

Outcome Working product Secure working product

�������� CIA Triad – The Three Security Goals

Goal Meaning

Confidentiality Only authorized access to data

Integrity Data/system not tampered with

Availability System/data accessible when needed

������ Definitions

Term Definition

SDL Security Development Lifecycle – infuses security into all SDLC phases

Threat Modeling Identifies potential attack paths and how to block them

Risk Analysis Evaluates the likelihood and impact of potential threats

Attack Surface All possible ways a system can be exploited

Secure by Design Building in security from architecture through code

��� Chapter 1 Quiz (Practice Questions)

1. What are the three goals of security in SDL?
→ Confidentiality, Integrity, Availability

2. How is SDL different from traditional SDLC?
→ SDL adds security to each development phase

3. When should threat modeling occur?
→ During the early stages, such as design

4. Why is software the new security battleground?
→ Most attacks now exploit software flaws, not just networks

5. What does "secure by design" mean?
→ Security is built into the architecture, not bolted on later

���� Final Review Tips

• Security is not quality – it's protection against misuse.

• SDL must start as early as requirements.

• You must know the CIA triad cold.

• Understand why security belongs to all roles, not just InfoSec.

���� CHAPTER 1: Introduction (Pages 3–14)

���� KEY CONCEPTS

1. Why Software Security Matters

• Software is a prime target for attackers because it's often deployed before it's
secured.

• Security can’t be patched in later—it has to be built-in from the start.

2. SDL vs. SDLC

• SDLC = Software Development Life Cycle (traditional dev process)

• SDL = Security Development Lifecycle (adds security activities to each SDLC
phase)

3. Secure Code ≠ Quality Code

• A program can be "high-quality" but still insecure if it doesn’t handle threats.

4. The CIA Triad

• Confidentiality – Protect data from unauthorized access

• Integrity – Ensure data is not tampered with

• Availability – Ensure systems are accessible and functional

5. Threat Modeling

• Involves understanding what assets need protection, who the threat actors are,
and how they might attack.

��� CHAPTER 1 QUIZ QUICK REVIEW

Q: What are the three most important SDL goals?
A: Confidentiality, Integrity, Availability

Q: What’s the difference between SDLC and SDL?
A: SDLC is the dev process; SDL integrates security into every step of the SDLC.

���� CHAPTER 2: The Security Development Lifecycle (Pages 15–23)

���� TAKEAWAYS

1. Why Traditional Security Fails

• Firewalls, IDS/IPS, and network defenses don't protect against app-layer
attacks like:

• XSS (Cross-Site Scripting)

• SQL Injection

• Buffer Overflows

2. SDL Is the New Standard

• Fixing vulnerabilities early is cheaper and more effective.

• SDL ensures security is part of design, not an afterthought.

3. Top SDL Models

• Microsoft SDL – Most mature, field-tested

• BSIMM (Build Security In Maturity Model)

• OWASP Code Review Guide

• Cisco Secure Development Lifecycle

4. Benefits of SDL

• Embeds security practices into each phase

• Reduces risk early (before release)

• Encourages collaboration between security and dev teams

�������� KEY TERMS & DEFINITIONS

Term Definition

SDL Security Development Lifecycle – integrates security into every
phase of development

SDLC Software Development Lifecycle – traditional software engineering
process

CIA Triad Confidentiality, Integrity, Availability – core security goals

Threat Modeling Identifying and analyzing security threats early in the lifecycle

Attack Surface The sum of all ways a system can be attacked

Cross-Site Scripting
(XSS)

Injecting malicious scripts into websites viewed by others

SQL Injection Attack that manipulates a database through unsafe input handling

Buffer Overflow Overwriting memory to inject code or crash the system

���� TIPS TO PASS THE QUIZ

• Know why network security is not enough (apps are the new attack vector).

• Be able to explain the difference between SDL and SDLC.

• Understand the benefits of using SDL early in dev.

• Memorize the CIA Triad and what each goal protects.

CHAPTER 2

����� Chapter Take-Aways (with Answers)

Q1: What are the biggest challenges in making software secure?
→ Resource limits, lack of skilled talent, tool gaps, and resistance to process change.

Q2: What models help guide secure development maturity?
→ BSIMM, SAMM, and ISO/IEC 27034.

Q3: What tools and roles are critical to software security?
→ Static/dynamic scanners, threat modeling tools, fuzzers. Roles include secure devs,
architects, champions.

Q4: Why are principles like least privilege important?
→ They reduce risk exposure and limit attack surfaces.

Q5: How does SDL map to SDLC and Agile/Waterfall?
→ SDL wraps around any dev model. Security tasks are inserted into each SDLC phase.

�������� 2.1 Overcoming Challenges

• Software is complex → more bugs.

• Lack of built-in security → patchwork solutions.

• SDL aims to be repeatable, measurable, and cost-effective.

��������� 2.2 Software Security Maturity Models

• BSIMM (Building Security In Maturity Model): Observational, used
to benchmark orgs.

• SAMM (Software Assurance Maturity Model): Prescriptive—helps you build a
roadmap.

• ISO/IEC 27034: Global standard for app security practices.

���� Tip: BSIMM = observe, SAMM = do.

���������� 2.3 – 2.4 SDL Best Practice Resources

• SAFECode: Industry-led security dev guidance

• DHS Software Assurance Program: US gov’t recommendations

• NIST: Authoritative security controls

• CVE: Database of known vulnerabilities

• SANS Top 25: Most common coding errors

• DoD CSIAC: Secure development resources

• CERT/Bugtraq/SecurityFocus: Real-world threat info

���� 2.5 Critical Tools and Talent

Tools:

• Static analysis (SAST): finds bugs without executing code

• Dynamic analysis (DAST): tests running apps

• Fuzzing: bombards app with input to crash it

• Threat modeling tools like Microsoft’s Threat Modeling Tool

Talent:

• Security architects

• DevSecOps engineers

• Security champions in each dev team

���� 2.6 Least Privilege

• Principle: only grant what’s necessary

• Minimizes the impact of a compromise

• Essential for RBAC and Zero Trust

�������� 2.7 Privacy

• Protect PII by:

• Minimizing collection

• Encrypting at rest & in transit

• Enforcing access controls

• Must align with:

• GDPR, CCPA, HIPAA

• Privacy by design!

������ 2.8 Importance of Metrics

Metrics = proof of progress.

Examples:

• % of code covered by static scans

• of security issues fixed before release

• of secure coding training completions

��� 2.9 SDL to SDLC Mapping

SDLC Phase SDL Activity

Requirements Threat modeling, privacy planning

Design Architecture analysis, secure patterns

Implementation Static code analysis, coding standards

Testing DAST, fuzzing, pen testing

Deployment Security review, license checks

Maintenance Patch mgmt, vulnerability disclosure

SDL is flexible — works with Waterfall, Agile, DevOps.

�� 2.10 Software Development Methodologies

Waterfall:

• Linear, phase-based

• Security fits neatly into each phase

• Good for strictly regulated environments

Agile:

• Iterative

• Security must be embedded in sprints

• Requires automation and culture shift

��� Chapter Quick Review

Question Answer

What is SDL? A security-focused lifecycle process

Which maturity models exist? BSIMM, SAMM, ISO/IEC 27034

What are key SDL tools? SAST, DAST, fuzzers, threat modeling

Why use least privilege? Minimizes risk exposure

What’s needed for privacy? Encryption, access control, legal compliance

������ Terms to Know

Term Definition

BSIMM Measures real-world SDL practices

SAMM Prescriptive roadmap for building SDL

Least Privilege Users/systems get minimum access needed

Fuzzing Sending random data to crash/find bugs

CVE Public list of known software vulnerabilities

���� CHAPTER TAKE-AWAYS

• Understand process, people, and tech challenges to secure software.

• Compare maturity models for SDL effectiveness.

• Review industry standards (e.g., ISO/IEC 27034, SAFECode, NIST, etc.).

• Learn the importance of least privilege, privacy, metrics, and mapping SDL to
SDLC.

• Know common development models like Waterfall and Agile and how to secure
them.

���� SECTION BREAKDOWN & CORE CONCEPTS

��� 2.1 Overcoming Challenges in Making Software Secure

• Legacy mindset: “Network security is enough” = WRONG

• Application-layer attacks bypass traditional defenses:

• XSS, SQL Injection, Buffer Overflow

• SDL provides:

• Integrated security controls

• Prevents & mitigates vulnerabilities at the code level

• Takeaway: SDL must be built-in, not bolted on.

��� 2.2 Software Security Maturity Models (SSMM)

Maturity models measure how advanced your security practices are.

• BSIMM (Build Security In Maturity Model)

• Tracks real SDL practices across 100s of organizations.

• OpenSAMM (OWASP)

• Helps orgs build and measure software security initiatives.

• Microsoft SDL

• Most referenced; used to secure Windows/Office

���� All models stress:

• Early threat modeling

• Policy enforcement

• Developer training

• Secure coding standards

��� 2.3 ISO/IEC 27034 – Application Security

• International standard for securing software in organizations.

• Core goals:

• Integrate security into business functions

• Focus on Application Security Controls (ASCs) — reusable secure components

��� 2.4 Resources for SDL Best Practices

Organization Role

SAFECode Promotes secure coding practices

DHS Software Assurance Program Guides on security controls

NIST SDL mapping, secure SDLC guidelines (SP800-64)

MITRE/CVE/NVD Vulnerability tracking and scoring (CVSS)

SANS Top 20 Lists top cybersecurity risks

CSIAC (DoD) Defense-focused SDL knowledge

CERT, Bugtraq, SecurityFocus Early vulnerability alerts & exploit DBs

��� 2.5 Critical Tools & Talent

Tools:

• Static & dynamic analyzers (e.g., SonarQube, Fortify)

• Fuzzers, threat modelers, penetration testers

Talent:

• Security Champions inside dev teams

• Skilled coders with secure design knowledge

• Analysts who understand business risk + tech

��� 2.6 Principle of Least Privilege (PoLP)

• Users, processes, and systems should have ONLY the permissions they need.

• Reduces blast radius when attacks occur

• Must be designed into software—not an afterthought

��� 2.7 Privacy

• Ensure SDL includes privacy-by-design

• Add data minimization, encryption, access control, user consent

• SDL tools can help enforce PIA (Privacy Impact Assessments)

��� 2.8 Importance of Metrics

• You can't improve what you can't measure:

• # of vulnerabilities discovered per phase

• Time to remediate

• # of secure code training sessions completed

• Metrics help prove ROI of SDL

��� 2.9 Mapping SDL to SDLC

SDLC Phase SDL Activity

Requirements Identify security & privacy goals

Design Threat modeling

Implementation Secure coding & static analysis

Testing Pen testing, dynamic scans

Deployment Review configs & release checklists

Maintenance Patch management, metrics tracking

��� 2.10 Software Development Methodologies

� 2.10.1 Waterfall

• Sequential (no going back)

• SDL activities must be front-loaded during design

��� 2.10.2 Agile

• Fast-paced, iterative

• SDL must be modularized (e.g., small secure coding tasks per sprint)

• Use automation for frequent tests

���� KEY TERMS (MEMORIZE THESE)

Term Definition

SDL Security Development Lifecycle – secure coding and processes
integrated into SDLC

BSIMM Maturity model to benchmark software security programs

OpenSAMM OWASP’s model to build measurable SDL

ISO/IEC 27034 International SDL standard for app security

CVE/NVD Common vulnerability registries & scoring (CVSS)

Principle of Least
Privilege

Give only minimum permissions required

PIA Privacy Impact Assessment

Secure Coding Techniques to avoid injection, buffer overflow, etc.

��� QUIZ PREP: SAMPLE QUESTIONS

1. Which model helps measure SDL maturity?
→ BSIMM or OpenSAMM

2. What standard defines application-level security controls?
→ ISO/IEC 27034

3. Which phase aligns with threat modeling in SDL?
→ Design

4. Why is least privilege important?
→ It limits damage from exploited components

5. What is one advantage of integrating SDL into Agile?
→ Security tasks become part of each sprint

��������� QUICK REVIEW SHEET

• SDL must be embedded in the SDLC

• Maturity models (BSIMM, OpenSAMM) help assess and grow

• ISO/IEC 27034 is key standard for secure app design

• Tools + Talent = SDL success

• Apply least privilege, privacy by design, metrics

• Agile = frequent secure coding checks

• Waterfall = upfront secure design

CHAPTER 3

����� Chapter Take-Aways (with Answers)

Q1: Why involve the security team early in a project?
→ To identify risks, shape security requirements, and influence design before costly
mistakes happen.

Q2: What happens in a discovery meeting?
→ The team gathers app details (purpose, data, architecture), sets security scope, and
identifies stakeholders.

Q3: What is an SDL Project Plan?
→ A roadmap that defines security milestones, owners, artifacts, and key activities across
the SDLC.

Q4: What’s the role of a PIA (Privacy Impact Assessment)?
→ Ensures privacy risks are known early and remediated during design — especially when
handling PII.

Q5: What defines success in the A1 phase?
→ Clear planning, early engagement, risk visibility, and measurable artifacts.

��� Key A1 Activities

��� 3.1 Involve Security Team Early

• Security isn't a last-minute task.

• Bring in the software security team before design starts.

• Benefits:

• Threat modeling ready early

• Fewer bugs = cheaper fixes

• Security woven into the system architecture

���� 3.2 Host a Discovery Meeting

• Participants: Architects, developers, security team, product owners.

• Goals:

• Define the app’s functionality and data sensitivity

• Review architectural decisions

• Identify third-party components

• Understand legal/privacy obligations

• Output: Security posture baseline and list of known gaps

������ 3.3 Create the SDL Project Plan

• Living document = adjusts as project changes

• Includes:

• Security milestones (threat model, pen test)

• Roles/responsibilities

• Tooling (SAST/DAST, PIA)

• Deliverables (risk register, test plan, logs)

• Helps track compliance and accountability

������������������� 3.4 Launch the Privacy Impact Assessment (PIA)

• Mandatory if handling:

• PII, PCI, PHI, etc.

• Identifies:

• What data is collected/stored/shared

• Who accesses it

• Applicable laws (GDPR, HIPAA, etc.)

• Privacy by design starts right here

������ 3.5 A1 Key Success Factors & Metrics

���� 3.5.1 Success Factors

• Clear communication with dev team

• Documented security requirements

• Effective cross-functional collaboration

• Use of standardized security templates/checklists

��������� 3.5.2 Deliverables

• SDL project plan

• Discovery meeting notes

• Risk register

• Initial threat model

• PIA initiation record

���� 3.5.3 Metrics

• of projects with early security engagement

• % of apps with completed SDL plan

• PIA coverage ratio

• Threat models completed vs. required

��� Chapter Quick Review

Question Answer

Why include security early? Lower cost, more secure design

What is discovery meeting for? Understand app, scope risk, collect context

What’s in SDL project plan? Milestones, owners, security activities

Why use a PIA? Identify & mitigate privacy risk early

A1 metrics? Security engagement %, threat models completed, etc.

������ Key Terms Defined

Term Definition

Discovery Meeting Early discussion of architecture, scope, and data

SDL Project Plan Document that tracks security steps across SDLC

PIA Assessment of how personal data is handled and protected

Security Posture Current state of security readiness and risk exposure

Risk Register List of known security threats and planned mitigations

���� 2.10.1 Waterfall Development (SDL Integration in Waterfall)

• Waterfall = linear, stage-by-stage development

• SDL tasks must be embedded upfront

• Planning and early threat modeling is critical

• Risk: Security missed if you wait until testing or deployment

���� Key SDL Add-ons for Waterfall:

• Add security gates between stages

• Require design reviews for security before coding

• Focus on early policy compliance and secure requirements gathering

���� 2.10.2 Agile Development (SDL Integration in Agile)

• Agile is iterative and time-boxed

• Security must be modular and automated

• Security tasks = small, manageable per sprint

• Use automation tools: Static Analysis, Dynamic Analysis, etc.

���� Key Practices:

• Threat modeling must evolve with each sprint

• Use a security backlog: logged risks, mitigations, and fixes

• Integrate security test cases in unit/integration testing

������ SDL in Agile vs Waterfall

Feature Waterfall Agile

Security timing Front-loaded Sprint-by-sprint

Threat modeling Once during design Ongoing, updated

Testing End of cycle Throughout development

SDL tools Manual + phased Automated + continuous

Flexibility Rigid High, requires DevSecOps

��������� 2.11 Chapter Summary

• Security must fit the dev methodology used

• Waterfall: heavy early investment in SDL planning

• Agile: continuous automation and integration

• Successful SDL adapts to your people, process, and tech

���� Chapter 3 Begins – Security Assessment (A1)

��� 3.1 Software Security Team Looped In Early

• A1 = Discovery Phase

• Identify product risk profile

• Outline SDL activities and controls

• Sync with project schedule

����� 4 Key Questions:

1. What is the software supposed to do?

2. What assets need protection?

3. What laws/regulations apply?

4. What are the threats?

��� 3.2 Discovery Meeting

• Security team meets with:

• Business owners

• Developers

• Compliance officers

���� Goal: Understand compliance, privacy, data handling, and threats early.

Deliverables:

• Asset inventory

• Risk classification

• Regulatory impact mapping

• Potential third-party risk

��� 3.3 SDL Project Plan Created

• A living document:

• SDL milestones

• Required security activities

• Assigned responsibilities

• Mapped to SDLC timeline

Why it matters:

• Keeps SDL visible & measurable

• Forces integration into planning

��� 3.4 Privacy Impact Assessment (PIA)

• Required if software handles PII (Personal Identifiable Information)

• Helps meet legal and regulatory standards

• Considers:

• Data minimization

• Access control

• Data encryption

• Consent and user rights

���� KEY TERMS TO REMEMBER

Term Definition

Agile SDL Modular, security-by-sprint integration with automation

Waterfall SDL Front-loaded security embedded into early stages

Discovery Phase (A1) First SDL phase to assess risk, compliance, and outline
plan

SDL Project Plan A document mapping SDL steps to SDLC stages

PIA (Privacy Impact
Assessment)

Evaluation of how PII is handled securely and lawfully

���� FINAL EXAM PRACTICE QUESTIONS

5. In Waterfall, when should SDL activities begin?
→ At the beginning, during planning/design

6. What makes SDL work in Agile?
→ Integration into sprints, use of automation, and evolving threat models

7. What's the first goal in the Security Assessment phase?
→ Define the product’s risk profile

8. Who attends the Discovery Meeting?
→ Business stakeholders, devs, legal/compliance, and security team

9. What does a PIA ensure?
→ Privacy compliance and proper PII handling

CHAPTER 4

🏛🏛 CHAPTER 4 – Architecture (A2): SDL Activities and Best Practices

Q1: What is the A2 phase about?
→ Ensures software architecture considers security, privacy, and compliance early, based
on business risk.

Q2: What’s the purpose of threat modeling?
→ Identify entry points, data flows, and threats to reduce security issues in architecture.

Q3: Why analyze open-source components?
→ Prevents vulnerabilities and license issues from entering through third-party code.

Q4: What does Privacy Information Gathering do?
→ Helps design privacy-respecting systems by mapping how PII is used, stored, and
shared.

Q5: What defines success in A2?
→ Effective threat modeling, policy compliance, and documented architecture-level
security decisions.

����� 4.1 Policy Compliance Analysis

• Review and map internal SDL policy to app features.

• Identify external regulations: HIPAA, GDPR, PCI, etc.

• Goal: Bake security/privacy expectations into design before coding starts.

��� 4.2 SDL Policy Assessment and Scoping

• Identify which security and privacy policies apply.

• Confirm with stakeholders the scope of:

• Risk tolerances

• Data classifications

• Control expectations

• Results feed into architectural security decisions.

������������������� 4.3 Threat Modeling & Architecture Security Analysis

�������� 4.3.1 Threat Modeling

• Focus: Understand potential attacker strategies

• Use STRIDE (Spoofing, Tampering, Repudiation, Info Disclosure, Denial, Elevation)

• Consider abuse cases, threat trees, misuse cases

��� 4.3.2 Data Flow Diagrams (DFDs)

• Identify:

• Trust boundaries

• Input/output channels

• Sensitive data paths

• Enables tracking attack surfaces clearly

���� 4.3.3 Architectural Threat Analysis

• Analyze design choices:

• APIs

• Frameworks

• Communication flows

• Rank risks using CVSS or DREAD

����������� 4.3.4 Risk Mitigation

• Design in:

• Input validation

• Logging

• Authentication mechanisms

• Build secure-by-design patterns into architecture

��� 4.4 Open-Source Selection

• Assess OSS libraries for:

• Security history

• License compatibility

• Community activity

• Keep SBOM (software bill of materials)

�������� 4.5 Privacy Information Gathering

• Identify:

• What PII is collected?

• Where is it stored/sent?

• Who has access?

• Result: Enables "privacy by design"

������ 4.6 Key Success Factors & Metrics

��� 4.6.1 Key Success Factors

• Involve all stakeholders

• Maintain traceable records

• Use standard threat models & DFD templates

• Update architecture with evolving threats

��������� 4.6.2 Deliverables

• Completed threat models

• Architectural review documents

• Privacy data maps

• Open-source component inventory

•

���� 4.6.3 Metrics

• % of projects with completed threat model

• of high-risk architecture flaws detected

• Time to complete policy scoping

��� Chapter Quick Review

Question Answer

Purpose of A2 phase? Ensure secure architecture decisions

What is STRIDE? Threat modeling categories

Why DFDs matter? Visualize data flows/trust zones

OSS risk? License + security vulnerabilities

Privacy info gathered? What/where/who handles PII

������ Key Terms Defined

Term Definition

Threat Modeling Process to identify and rank threats

Data Flow Diagram (DFD) Visual map of how data moves

Open Source Review Vetting 3rd-party code for security & license issues

Risk Mitigation Security controls added at design level

PII Map Diagram of personal data handling in the system

��� 3.5 Key Success Factors and Metrics

�� 3.5.1 Key Success Factors:

• Clearly identified stakeholders and their security responsibilities

• Minimum security and privacy requirements documented

• SDL Plan finalized early in the SDLC

• Implementation of a tracking system for vulnerabilities (like JIRA)

��� Tip: Think of these as the "ground rules" that set the project up for success.

�� 3.5.2 Deliverables from A1 Phase:

1. Stakeholder matrix

2. Security roles/responsibilities

3. Minimum security requirements

4. PIA (Privacy Impact Assessment) outline

5. SDL work item tracking setup

6. Threat profile — inputs for next phases like threat modeling

�� 3.5.3 Metrics:

Track these during A1 to gauge maturity:

• of stakeholders assigned security roles

• Time to complete PIA

• of security controls identified

• Ratio of unresolved A1 tasks before A2

��� Metrics = Evidence that security was "built-in" from Day 1

��� 3.6 Summary – A1 Best Practices

• Security should be part of planning not post-release

• Privacy and security risk assessments are mandatory

• SDL foundation set during A1 = smoother secure dev cycle

��� Chapter Quick-Check (Sample Questions)

7. Why is the Discovery Meeting important?
→ To integrate security from the start of development

8. PIA ensures?
→ Lawful and secure handling of PII (Personal Identifiable Information)

9. Threat profile created in A1 feeds into?
→ Requirements gathering and threat modeling

����� CHAPTER 4 BEGINS – Architecture (A2) Phase

������ 4.0 Chapter Overview

• A2 ensures security requirements, threats, and constraints are accounted for in
architecture.

• It includes:

• Policy reviews

• Threat modeling

• Risk ranking

• Design constraints

• Open-source code review

��� Focus: Embed security early in the technical blueprint of the system

��� Chapter 4 Take-Aways (Preview)

• Learn how to apply policy compliance checks

• Perform effective threat modeling using Data Flow Diagrams (DFDs)

• Identify and rank architectural threats

• Evaluate open-source components for risk

• Prepare security-focused architecture deliverables

���� KEY TERMS TO MEMORIZE

Term Definition

PIA Privacy Impact Assessment – ensures lawful use of personal data

Threat Profile Document listing threats, actors, and vectors for a system

SDL Plan Roadmap aligning SDL activities with SDLC phases

Security Roles Matrix Identifies who owns what security responsibility

A1 Phase Initial SDL phase where risk, privacy, and planning is done

��������� EXAM REVIEW SHEET (Pages 53–64)

Question Answer

What is the goal of the A1 phase? Establish foundation for secure development

What does the SDL Plan contain? Milestones, controls, roles, requirements

Why is tracking security items important? For accountability and auditability

Which phase does A1 feed into? A2 – Architecture

Why do metrics matter in A1? Proves maturity and process discipline

CHAPTER 5

��� CHAPTER 5 – Design and Development (A3): SDL Activities and Best Practices

���� Chapter Take-Aways

• Understand A3 phase activities in the SDL.

• Learn key success factors for A3.

• Create draft deliverables and a test plan for a case study.

• Perform threat model updates, design reviews, and privacy assessments.

�������� Key Concepts

5.1 A3 Policy Compliance Analysis

• Continues from A2’s policy review.

• Includes external policies: corporate, privacy, open-source, and IP protection.

• Goal: Ensure developers follow external and internal rules for secure and private
code.

5.2 Security Test Plan Composition

• Test plans should align with functional/design specs.

• Must support:

• Security requirements validation

• Threat mitigation validation

• Privacy controls

• Should include: security roles, attack surface, and test coverage matrix.

5.3 Threat Model Updating

• Review/update threat models from A2.

• Analyze for new design risks or updates from requirement changes.

• Include architectural reviews and attack surface updates.

5.4 Design Security Analysis and Review

• Reviews that verify secure design:

• Proper authentication/authorization.

• Secure session management.

• Use of approved crypto libraries.

• Input validation.

• Tools: checklists, STRIDE, architectural risk analysis.

5.5 Privacy Implementation Assessment

• Examine:

• Data collection/storage practices.

• Access controls on personal data.

• Compliance with privacy policies.

• Verify privacy features match business/legal requirements.

���� Key Success Factors (5.6.1)

• All tests and designs mapped to security/privacy requirements.

• Updated threat model and attack surface documentation.

• Defined secure coding best practices.

���� Deliverables (5.6.2)

• Security Test Plan.

• Updated threat model.

• Secure Design Review document.

• Privacy Assessment.

������ Metrics (5.6.3)

• % of code reviewed for security/privacy.

• of mitigated threats or vulnerabilities.

• Test coverage for security and privacy controls.

�������� Key Terms

Term Definition

A3 SDL Phase focused on secure design and development

Security Test Plan Document defining test cases for security validation

Threat Model Structured analysis of threats and vulnerabilities

Privacy Assessment Evaluation of how personal data is handled securely

Secure Coding Standards Rules to prevent introducing vulnerabilities in code

���� Summary

The A3 phase sets the foundation for a secure, privacy-aware software build. It's all
about:

• Aligning design with security/privacy policies.

• Updating and verifying threat models.

• Planning test coverage.

• Ensuring privacy protections are implemented before code is written or shipped.

��������� Quiz Questions (Practice)

1. What is the main goal of the A3 policy compliance analysis?

• Ensure compliance with internal and external security/privacy policies.

2. Why is threat model updating necessary in A3?

• To capture new risks introduced during design or requirement changes.

3. What should a security test plan include?

• Roles, attack surface, test types, and mapping to requirements.

4. What is verified during design security reviews?

• Correct use of auth, input validation, crypto libraries, and secure storage.

5. What’s the purpose of a privacy implementation assessment?

• Validate data protection practices and legal compliance.

����� CHAPTER 5 – DESIGN & DEVELOPMENT (A3) SDL PHASE

����� Chapter Objectives (Take-Aways)

• Analyze design and code for security policy compliance

• Develop a security test plan

• Perform threat model updates

• Conduct a design security review

• Assess privacy implementation

• Document success factors, deliverables, and metrics

������ 5.1 A3 Policy Compliance Analysis

• Ensure architecture/design aligns with:

• SDL goals

• Regulatory & business security policies

• Focus Areas:

• Authorization, authentication, auditability

• Compliance frameworks (HIPAA, GDPR, PCI, etc.)

• Secure architectural patterns (zero trust, defense in depth)

�������� Example: Ensure authentication uses secure protocols (e.g., OAuth2, SAML)

���� 5.2 Security Test Plan Composition

• Plan defines how, what, and when to test:

• Functional security (e.g., access control)

• Non-functional security (e.g., performance under attack)

• Include:

• Static Analysis (SAST)

• Dynamic Analysis (DAST)

• Pen Testing

• Fuzz Testing

• Regression test plans for security fixes

���� Tip: Think of this as the blueprint for secure QA

��� 5.3 Threat Model Updating

• Architecture and code changes? ➝ Update threat model

• Keep threat models aligned with reality (new services, APIs, features)

• Include abuse cases & potential privilege escalation

���� Use tools like:

• STRIDE (Spoofing, Tampering, Repudiation, Info Disclosure, DoS, Elevation)

• DFDs (Data Flow Diagrams)

�������� 5.4 Design Security Analysis and Review

• Validate that design decisions meet:

• Security requirements

• Privacy controls

• Risk mitigation expectations

• Techniques:

• Whiteboard reviews

• Architecture walkthroughs

• Peer code review (esp. for secure libraries)

��� Look for:

• Least privilege enforcement

• Secure session management

• Secure data storage and transmission

�������� 5.5 Privacy Implementation Assessment

• Check if system:

• Minimizes data collection

• Applies encryption to PII

• Implements consent and access controls

• Ensure privacy by design — not after the fact

• Aligns with PIA (Privacy Impact Assessment) created earlier

���� Watch for data leaks, excessive logging, or insecure defaults

���� 5.6 Key Success Factors and Metrics

����� 5.6.1 Success Factors

• Architecture mapped to security requirements

• Updated threat models reviewed

• Secure design patterns reused

• Security test plan in place before implementation

��������� 5.6.2 Deliverables

• Updated threat model

• Completed design security review

• Documented privacy compliance status

• Finalized security test plan

������ 5.6.3 Metrics

Track:

• % of design flaws caught in review

• of critical vulnerabilities before code complete

• Time to update threat model after design changes

��� CHAPTER 5 QUICK REVIEW

Question Answer

What’s the main task in A3? Secure design & test planning

Why update threat models? Code & architecture change

What is in a security test plan? SAST, DAST, fuzz, pen testing

What does the privacy review look
for?

Data minimization, access control, encryption

What proves A3 success? Design flaws caught early, test coverage, secure
reviews

���� TERMS TO KNOW

Term Definition

Threat Modeling Process to identify, analyze, and mitigate threats

Security Test Plan Blueprint for how security testing is conducted

Design Security Review Validation of architecture/design against security policies

Privacy by Design Embedding privacy from initial design phases

Static/Dynamic Analysis Code scanning before & during execution

 CHAPTER 6

��� CHAPTER 6 – Design and Development (A4): SDL Activities and Best Practices

• Understand the Design and Development (A4) phase of the Security Development
Lifecycle (SDL)

• Learn how to conduct security test case execution

• Use tools like static, dynamic, and fuzz testing

• Conduct manual code reviews

• Know privacy validation and remediation techniques

• Prepare testing reports for security compliance

���� MAJOR CONCEPTS & DEFINITIONS:

Term Definition

A4 Phase The "readiness" stage in the SDL. Prepares software for secure
release.

Static Analysis Examines source code before compiling to catch vulnerabilities
early.

Dynamic Analysis Runs the application and watches for misbehavior during
execution.

Fuzz Testing Sends malformed/random data to crash app or reveal input
vulnerabilities.

Manual Code Review Human-led inspection of source code to detect security flaws.

Policy Compliance
Analysis

Ensures that the application follows org’s security policies at
this stage.

Security Test Case
Execution

Run a defined set of security tests for different scenarios and
outcomes.

���� KEY ACTIVITIES IN A4 PHASE

1. Policy Compliance Analysis (6.1)

• Validate project complies with internal security policies.

• Ensure alignment with SDL documentation.

2. Security Test Case Execution (6.2)

• Develop security-focused test cases.

• Measure against known vulnerabilities.

• Includes both positive and negative test scenarios.

3. Code Review (6.3)

• Use automated tools and manual reviews.

• Helps catch:

• Unsafe function calls

• Poor error handling

• Missing input validation

4. Security Tools (6.4)

• Static Analysis (early detection): syntax, API usage, logic flaws.

• Dynamic Analysis (run-time testing): memory leaks, race conditions.

• Fuzz Testing (crash it!): test for unpredictable input/output behavior.

• Manual Code Review (human + tool insights).

������ KEY SUCCESS FACTORS (6.5)

• Integration of security tools into the dev process.

• Frequent code reviews and test cycles.

• Timely remediation of identified issues.

• Updated documentation after test cycles.

��������� DELIVERABLES (6.6)

• Security testing results

• Updated test cases

• Security compliance status reports

• Issue tracking and remediation documentation

������ METRICS (6.7)

• of test cases executed

• of issues discovered

• % compliance with security requirements

• of retests done

• Severity levels of open issues

���������� CHAPTER SUMMARY (6.8)

This phase builds assurance through testing. You verify the product is secure using
both automated tools and manual reviews. It's about making sure vulnerabilities are
identified, tested, and resolved before the next phase (A5 Ship). Testing and validation are
continuous.

 CHAPTER 7

���� Chapter 7 – Ship (A5): SDL Activities and Best Practices

����� Chapter Take-Aways (Test Focus)

• Understand the final activities before shipping secure software.

• Conduct final SDL policy compliance analysis.

• Execute vulnerability scans and code-assisted penetration testing.

• Perform open-source licensing reviews.

• Complete final security and privacy reviews.

• Know the key success factors, deliverables, and metrics for the shipping phase.

�������� Key Concepts and Processes

��� 7.1 A5 Policy Compliance Analysis

• Final check to ensure all SDL policies are applied.

• Tailored by product type, code type, platform, and associated risks.

�������� 7.2 Vulnerability Scan

• Automated tools scan for known vulnerabilities.

• Ensures software and surrounding systems are clean before release.

�������� 7.3 Code-Assisted Penetration Testing

• Goes beyond scanning: simulates real-world attacks.

• Involves a third-party security expert/team ("another set of eyes").

• Provides an independent, deep-dive security validation.

���� 7.4 Open-Source Licensing Review

• Checks all third-party and open-source software used.

• Ensures legal and compliance requirements are met.

• Prevents unintentional violations that could cause lawsuits or revocation of usage
rights.

��� 7.5 Final Security Review

• Aggregates outputs of all SDL activities: threat models, scan results, security tests.

• Verifies if security requirements from earlier phases were met.

������������������� 7.6 Final Privacy Review

• Ensures privacy concerns are addressed before shipping.

• Includes compliance with data protection laws (like GDPR, HIPAA, etc.).

�� 7.7 Key Success Factors

• Early and continual involvement of security teams.

• Complete and accurate documentation.

• Effective collaboration between legal, engineering, and security teams.

��������� 7.8 Deliverables

• Final security and privacy reports

• Documentation of scans, test results, SDL compliance checklists

• Review sign-offs from all stakeholders

������ 7.9 Metrics

• Number of open vs. resolved vulnerabilities

• Penetration test findings

• Licensing compliance success rate

• Time spent fixing final-phase security issues

���� 7.10 Summary

• This phase is the final gate before release.

• If any critical issues remain unresolved, the product may not be cleared for
release.

• Includes a go/no-go decision based on security and privacy review outcomes.

��� Chapter Quick-Check (Practice Quiz)

Q1: What’s the purpose of the final SDL policy compliance analysis?
A: Ensure all security and privacy requirements are met for release based on project type
and platform.

Q2: What’s the difference between vulnerability scanning and penetration testing?
A: Scanning is automated and detects known flaws; penetration testing simulates real
attacks manually or semi-automatically.

Q3: Why is a third-party used for penetration testing?
A: Provides an independent perspective and deeper evaluation.

Q4: What does the final privacy review check for?
A: Ensures data handling complies with legal and internal privacy requirements.

Q5: What is a common metric tracked in the ship phase?
A: Ratio of resolved to unresolved vulnerabilities.

����� Bold Terms & Definitions

Term Definition

SDL Policy Compliance Ensures security guidelines are followed throughout the
lifecycle.

Vulnerability Scan Automated search for known security weaknesses.

Penetration Test Manual or semi-automated simulated attack to find
vulnerabilities.

Open-Source Licensing
Review

Checks for proper usage and legal compliance of third-party
code.

Final Security Review Aggregated review of all security activities to determine
readiness.

Final Privacy Review Ensures personal data handling meets privacy
requirements.

CHAPTER 8

��� CHAPTER 8: Post-Release Support (PRSA1–5)

• Understand the structure and role of post-release support in software security.

• Learn how to build a responsive PSIRT (Product Security Incident Response Team).

• Grasp third-party review, post-release certification, and legacy/M&A security
assessment processes.

• Identify key deliverables, metrics, and organizational roles for ongoing support.

�� Key Sections & Summary:

���� 8.1 Right-Sizing the Software Security Group

• Needs a minimum of one principal security architect.

• Larger orgs: SSCs (Security Champions) per product + SSEs (Evangelists) for training
and policy enforcement.

• Ensure software teams are empowered to own their own security.

���� 8.2 PRSA1: External Vulnerability Disclosure Response

• Define a process for post-release vulnerabilities.

• Roles: PSIRT, privacy teams, legal, comms, dev teams.

• Use bug bounty programs & vulnerability databases (e.g., CERT, NVD).

���� 8.3 PRSA2: Third-Party Reviews

• External, independent assessments.

• 2 versions of each report: internal (detailed), external (sanitized).

• Should be comprehensive and include remediation recommendations.

���� 8.4 PRSA3: Post-Release Certifications

• Driven by market, customer, or regulatory demand.

• Requires periodic renewal if conditions persist (e.g., SOC 2, FedRAMP).

���� 8.5 PRSA4: Internal Review for New Product Combos or Cloud Deployments

• Triggered when combining products or moving to cloud.

• Needs new risk/threat model analysis.

• Apply same SDL rigor post-launch.

���� 8.6 PRSA5: Security Architectural Reviews (Legacy, M&A, EOL)

• Legacy code: Often undocumented, no ownership, risky.

• M&A: Risk of absorbing insecure or non-compliant codebases.

• End-of-life (EOL): Secure shutdown and documentation.

���� Key Success Factors:

• Predefined response workflows (e.g., PSIRT).

• Good tooling for tracking issues.

• Organizational buy-in and trained people in all areas (not just devs).

���� Deliverables:

• External vuln disclosure plan

• Third-party review reports

• Security strategy for legacy, M&A, and EOL

• Post-release certification docs

������ Metrics:

• Time to respond to external vulns (in hours)

• FTE hours/month spent on disclosure process

• Number of findings post-release

• Number of customer-reported issues

• % of unreported issues found outside SDL

���� Chapter Quick-Check Sample Questions:

1. What is essential for product deployment post-release?

��� Configuration management

2. How should incident response processes behave?

��� Routinely executed and tested

3. Who makes up the incident management team?

��� Diverse group from all disciplines

4. What is sustainment in ops and management?

��� Ongoing configuration and change management

���� Practice Summary:

This chapter is about preparing your product and org for life after launch. You’re not done
at “ship” — you need to actively support your software, hunt for vulns, fix issues, and
remain compliant through third-party eyes.

Treat security as a living process, not a checkbox.

CHAPTER 9

��� Chapter 10 Summary: Practical Core Software Security – Building and Sustaining a
Software Security Program

���� Chapter Overview

Chapter 10 ties together all the lessons of the book and focuses on building and sustaining
a successful software security program (SSP). It explores cultural change, executive buy-
in, talent management, and metrics-driven maturity growth.

����� Chapter Take-Aways (With Answers)

1. Describe the challenges and opportunities in building a software security
program.

• Challenges: Cultural resistance, lack of executive support, limited resources, poor
developer training.

• Opportunities: Strong ROI, brand protection, legal compliance, product quality
boost.

2. Understand the foundational building blocks of a successful software security
program.

• Executive sponsorship

• Clear goals and vision

• Talented cross-functional teams

• SDL integration across SDLC

• Repeatable metrics-driven processes

3. Define the best practices for gaining executive support and alignment.

• Present security in business terms (risk mitigation, compliance, cost avoidance).

• Provide real-world breach examples.

• Align goals with corporate strategy.

4. Describe the concept of “defense-in-depth” in a software security context.

• Multiple layers of security (code, network, data, identity, etc.) across the entire
SDLC.

5. Explain how to measure, report, and evolve the software security program.

• Use maturity models (like BSIMM, SAMM).

• Track metrics (e.g., vulnerabilities per product, SDL adoption rate, remediation
SLAs).

• Iterate improvements via feedback loops.

���� Key Concepts and Terms

Term Definition

Software Security
Program

A long-term, strategic initiative for securing software across the
organization.

Executive Sponsorship High-level support necessary to fund, promote, and sustain
security programs.

Defense-in-Depth A multi-layered approach to security that protects at various
points of failure.

Security Champions Developers embedded in teams who promote secure coding
practices.

Security Metrics Quantifiable data points like vulnerabilities found/fixed, SDL
participation.

��� Implementation Strategy Steps

6. Start Small and Scale – Pilot with one team, learn, adjust, expand.

7. Identify Security Champions – Empower influential developers.

8. Train Continuously – Make security training role-specific and ongoing.

9. Incentivize – Reward good behavior: secure code, fast response, initiative.

10. Report to Execs Regularly – Show progress, risks, and ROI.

• Can I identify basic software security concepts and principles used throughout the
SDLC?

• Can I determine the importance and types of functional and non-functional
software security requirements?

• Can I explain threat and vulnerability taxonomies that are used throughout the
software development community?

Software security is essential to protect against malicious attacks so the software can
function correctly. This lesson discusses the importance of implementing security early in
the software development life cycle and looks at various ways of implementing security to
provide integrity, authentication, and availability while doing software development.

Consider the following learning objectives as you move through the lesson:

• Identify basic software security concepts and principles involved throughout the
software development life cycle (SDLC).

• Determine applicable secure software coding guidelines and standards.

• Practical Core Software Security

• In this digital age, have you ever wondered if your information is safe and secure

when you log in to an application or fill out a form on the internet? This lesson

describes the importance of software security and application security and looks at

the various challenges in the software development life cycle (SDLC). The

software development life cycle standardizes security best practices. As a result,

security has become an essential aspect of every software development and must

be considered starting from the design phase. You will look into the quality versus

secure code and the implications of neglecting security. As you explore the goals of

the security development life cycle (SDL), the structured process to enable the

production of software, and the role of security in SDLC with application risk

analysis, you will gain a better understanding of software security as a whole.

• Read chapter 1 "the book" from Practical Core Software Security: A Reference

Framework for a more in-depth understanding of software security during software

development.

https://eds.p.ebscohost.com/eds/ebookviewer/ebook?sid=76108795-1b56-491d-a251-9545172ad098%40redis&ppid=pp_1&vid=0&format=EB
https://eds.p.ebscohost.com/eds/ebookviewer/ebook?sid=76108795-1b56-491d-a251-9545172ad098%40redis&ppid=pp_1&vid=0&format=EB

Software and Systems Security for CompTIA CySA+

As you consider security within your organization, you need to understand both software
and hardware securities. Software refers to any programs or operating systems that your
organization uses. Hardware describes the physical components of a computer. In this
lesson, you will learn to evaluate and integrate security in software and hardware and
discover the different phases and models of SDLC while also considering their advantages
and disadvantages. This will help determine what is best for the given organization. The
need for code reviews is crucial in deciding security systems, so the second part of the
lesson looks at best practices for coding securely. Finally, the lesson discusses SOA,
microservices architectures, and infrastructure-as-code in cloud computing.

Watch Software and Systems Security for CompTIA CySA+ (02:23:00) to learn more about
how to evaluate and integrate security within both software and hardware used by your
organization.

References

Meredith, D. (2020, Oct 7). Software and systems security for CompTIA CySA+ [Video].
PluralSight. https://app.pluralsight.com/library/courses/software-systems-security-
comptia-cysa-plus/table-of-contents

Ransome, J., Misra, A. and Merkow, M. (2023). Practical core software security: A reference
framework. CRC Press.
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-
live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

• It's crucial to identify the importance, relevance, and cost of building security into your
software.

• SDLC stands for the software design life cycle.

• SDL stands for security development life cycle.

• Software security entails building security into the software through an SDL in an SDLC.

• The three core elements of security are confidentiality, integrity, and availability.

• Threat modeling and attack surface validation throughout the SDL will alleviate security
vulnerabilities.

• Integrating and evaluating software and hardware used by your organization will maximize
your organization's software and security.

• There are eight major phases of the SDLC: planning, requirements, design, implementation,
testing, deployment, maintenance, and end of life.

https://lrps.wgu.edu/provision/345366545
https://app.pluralsight.com/library/courses/software-systems-security-comptia-cysa-plus/table-of-contents
https://app.pluralsight.com/library/courses/software-systems-security-comptia-cysa-plus/table-of-contents
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

Key Terms

• hardware: the physical components of a computer or electronic system

• deployment phase: during this phase of the SDLC, security is pushed out

• design phase: during this phase of the SDLC, requirements are prepared for the
technical design

• end of life phase: during this phase of the SDLC, the proper steps for removing
software completely are considered

• implementation phase: during this phase of the SDLC, the resources involved in
the application from a known resource are determined

• maintenance phase: during this phase of the SDLC, ongoing security monitoring is
implemented

• planning phase: during this phase of the SDLC, a vision and next steps are created

• requirement phase: during this phase of the SDLC, necessary software
requirements are determined

• secure code: a principle design in coding that refers to code security best
practices, safeguards, and protection against vulnerabilities

• security development life cycle (SDL): a process that standardizes security best
practices

• software: the program and operating systems used by a computer

• software development life cycle (SDLC): a structured process that enables the
production of software

• testing phase: during this phase of the SDLC, software is tested to verify its
functions through a known environment

• threat modeling: a structured process to protect against vulnerabilities

Describe security standards, best practices, and tools to achieve secure development life
cycle (DL) and software development life cycle (SDLC) goals.

The Security Development Life Cycle

The security development life cycle standardized security best practices, but does that
mean every organization should have the same security? Of course not! This lesson will
introduce different security models which may be appropriate for multiple organizations.
First, you will start by discussing the challenges in securing applications with examples of
different types of attacks. Later on, you will dive deeper into the two security
models: Building Security in Maturing Model (BSIMM) and Open Web Application
Security Project (OWASP). BSIMM studies real-world software security, while OWASP is a
flexible and prescriptive framework that helps build security into your software
development organization. These models put forth studies and perspectives to improve
software security in our ever-changing world. Additionally, you will read about various
resources available for SDL best practices, including guidelines from the National
Institute of Standards and Technology (NIST) and the US government. The NIST provides
research, information, and tools for both government and corporate information security.
You will also explore the various tools and techniques available for code review and
gathering meaningful security metrics; the lesson ends with mapping SDL to SDLC phases
and discussing the different SDLC methodologies.

Read chapter 2 "The Security Development Lifecycle" from Practical Core Software
Security: A Reference Framework to continue to learn about the security development life
cycle and the challenges it may face.

Evolution of Application Security

In this section of the lesson, you will watch a video regarding the evolution of application
security. Application security describes the concept that the online world is constantly
evolving. To keep up, it is imperative to develop, add, and test security features
continuously. This video considers how modern-day application security programs achieve
success. Garrett Gross and Alyssa Miller discuss the open-source community, which has
grown exponentially and includes many libraries and packages available to use. They also
discuss the DevOps pipeline, the various tools available in the market, and how you can
choose tools specific to your use case. Software security professionals should feel
empowered to integrate security with a developer-centric mindset; this allows
development teams to trust that all team members are aligned in their mission to release
good, secure software.

Watch Shift Left, Shift Right: The DevSecOps Hokey Pokey (00:30:36) to gain a deeper
insight into the evolution of application security.

https://lrps.wgu.edu/provision/355749941
https://lrps.wgu.edu/provision/345367460

Check out NIST’s AI framework. NIST has developed numerous standards for Computer
Security, so explore their influence on AI.

AI Risk Management Framework

References

Gross, G. and Miller, A. (2020, Oct 6). Shift left, shift right: The DevSecOps hokey
pokey [Video]. PluralSight. https://app.pluralsight.com/library/courses/allthetalks-session-
52/table-of-contents

Ransome, J., Misra, A. and Merkow, M. (2023). Practical core software security: A reference
framework. CRC Press.
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-
live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

Take a moment to think about what you learned in this lesson.

• Implementing an SDL program ensures that security is built into a software design
rather than an afterthought.

• Some popular SDL models are BSIMM SSDL Touchpoints, the OWASP Code Review
Guide, the Cisco Secure Development Life Cycle (Cisco SDL), and Microsoft's
Trustworthy Computing Security Development Life Cycle.

• Building Security In Maturing Model (BSIMM) studies real-world software security
initiatives. It allows you to determine where your software security stands and how
to develop it over time.

• There are 12 best BSIMM practices.

• The OWASP Software Assurance Maturity Model (SAMM) is a flexible and
prescriptive framework for building security into software development
organizations.

• The National Institute of Standards and Technology (NIST) provides research,
information, and tools for government and corporate information security.

• The US Department of Homeland Security has an established Software Assurance
Program.

• Common Computer Vulnerabilities and Exposures (CVE) is a list of information that
aims to provide common names for publicly known security vulnerabilities.

• You must map whatever form of SDL you use to your current SDLC.

https://www.nist.gov/itl/ai-risk-management-framework
https://app.pluralsight.com/library/courses/allthetalks-session-52/table-of-contents
https://app.pluralsight.com/library/courses/allthetalks-session-52/table-of-contents
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

• Security metrics allow for corporations to make decisions regarding risk
management requirements and security budgets and to show customers proof of
security.

• Application security is the process of developing, adding, and testing security
features within applications.

• Application security aims to prevent security vulnerabilities against threats.

Key Terms

• application security: developing, adding, and testing security features to prevent
vulnerabilities within applications

• Building Security In Maturing Model (BSIMM): a study of real-world software
security that allows you to develop your software security over time

• dynamic analysis: the analysis of computer software that is performed when
executing programs on a real or virtual processor in real time

• fuzz testing: automated or semi-automated testing that provides invalid,
unexpected, or random data to the computer software program

• National Institute of Standards and Technology (NIST): provides research,
information, and tools for government and corporate information security

• measurement model: a set of data security methods that developers take to
protect against vulnerabilities

• metric model: allows an organization to determine the effectiveness of its security
controls

• Open Web Application Security Project (OWASP): a flexible and prospective
framework to build security into your software development organization

• static analysis: the analysis of computer software that is performed without
executing programs

Explain the advantages, disadvantages, and software development roles within the

Agile, Waterfall, and DevSecOps frameworks.

Software Development Methodologies

You may already be familiar with the terms Agile, Waterfall, and maybe even the V-Model.
However, have you considered the impact of their histories on the way they are used today?
In this lesson, you will learn about these methodologies in greater detail. The Waterfall
methodology is a sequential, step-by-step process for addressing an organization's
requirements. The V-Model follows Waterfall methodology but then turns back upwards
after the coding process. The Agile methodology mixes traditional and new software
development practices. You will dive deep into their history, how they work, and their
advantages and disadvantages. You will also explore how development teams might
use Scrum – a newly popular, flexible, and holistic product development strategy – to work
as a unit to reach a common goal. After learning the ins and outs of these methodologies,
you will be able to use this information to make informed decisions about how to apply
them in your organizations moving forward.

Watch Agile Fundamentals (02:40:00) to learn more.

Agile vs. Waterfall

Now it's time to go into even greater detail about the Agile and Waterfall models, their
differences, and approaches to choosing a model. Scrum, its framework, and its
methodology will also be discussed, as well as the various Scrum roles and values. After
watching this video, you should feel more confident choosing the best methodology for
your organization.

Watch Learning the Truth about Agile vs. Waterfall (01:05:00) to explore more about the
Agile and Waterfall models.

References

Cobb, C. (2020, May 7). Learning the truth about Agile versus Waterfall [Video]. PluralSight.
https://app.pluralsight.com/library/courses/learning-agile-versus-waterfall/table-of-
contents

Haunts, S. (2020, Jan 1). Agile fundamentals [Video]. PluralSight.
https://app.pluralsight.com/library/courses/agile-fundamentals/table-of-contents

https://lrps.wgu.edu/provision/362153409
https://lrps.wgu.edu/provision/345367297
https://app.pluralsight.com/library/courses/learning-agile-versus-waterfall/table-of-contents
https://app.pluralsight.com/library/courses/learning-agile-versus-waterfall/table-of-contents
https://app.pluralsight.com/library/courses/agile-fundamentals/table-of-contents

ake a moment to think about what you learned in this lesson.

• The Waterfall approach divides the process of software development into separate
phases. The outcome of one phase acts as the input for the next phase.

• An advantage of the Waterfall method is splitting project deliveries into different
stages, making it easier for an organization to control the development process.

• A disadvantage of the Waterfall method is that it does not allow time for reflection or
revision to a design.

• A V-model is not designed to be linear, but instead, the stage is turned back upward
after the coding phase is complete, creating the V shape.

• The Agile methodology mixes traditional and new software development practices.

• Agile software development uses collaboration between self-organizing and cross-
functional teams.

• Agile has four core values and 12 principles that can be followed.

• Agile framework allows for customer satisfaction through rapid, continuous delivery
of useful software.

• A disadvantage of Agile is that it is difficult to assess the effort required at the
beginning of the SDL.

• Scrum framework allows for a development team to work flexibly and holistically to
reach a common goal.

• Extreme programming intends to improve software quality and responsiveness.

• Extreme programming is a type of Agile software development.

• Consider your software development projects and determine which approach is
most suitable for you.

Key Terms

• Agile methodology: mixes traditional and new software development practices

• extreme programming (XP): a software development methodology that is intended
to improve software quality and responsiveness

• Scrum: flexible, holistic product development strategy where a development team
works as a unit to reach a common goal

• V-model: a variation of the waterfall model, where the stage is turned back upwards
after the coding phase

• Waterfall methodology: a sequential, step-by-step process for requirements

This section, Software Requirement and Risks, covers the first two phases of the security
development life cycle (SDL): the Security Assessment phase and the Architecture phase.
In some SDLs, the Security Assessment phase is known as the Discovery phase.

During the Security Assessment phase, the project team identifies the risk profile and
needed SDL activities of the software product. An initial project outline for security is
developed and merged into the overall project development schedule to allow project
members to respond as changes occur. The security assessment should determine how
critical the product is to meeting customer needs, what security objectives are required,
what regulations and policies are applicable, and what threats are possible in the product’s
operating environment. The assessment team should be included in project kickoff
meetings to ensure discussions about security are happening as early as possible.

Software security teams need to define how security should work within the product and to
verify the functionality exists. To do that, they interview product stakeholders during the
security assessment to determine security requirements. Those security requirements are
added to the product backlog, just like functional application requirements.

This section covers one competency in two lessons:

• Lesson 4: Security Assessment Planning

• Lesson 5: Architecture Security Analysis

Build Employability Skills and Competence

Software security has come under increased scrutiny over the last 10–15 years due to a
number of high-profile cases where private information has been stolen. Since security
breaches can cost companies millions of dollars, opportunities in cybersecurity and
software security have multiplied in recent years. IT employees that aren’t directly in the
security space are expected to have foundational knowledge of software security threats.

The skills in this section are:

1. Define the requirements for a software solution.

2. Determine which security measures are required based on client requirements.

3. Ensure compliance with organizational information privacy.  

In this section, you can demonstrate these skills by passing a final assessment that
measures whether you have mastered this competency:

• The learner assesses software requirements and risks to ensure threats are
addressed.

Prepare for the Assessment

To prepare for the objective assessment, ask yourself these questions:

• Can I identify the key components of the Security Assessment (A1) phase?

• Can I explain threat modeling methodology and how an organization should go
about choosing one?

1. Identify requirements, tools, and techniques for software solutions that ensure
security threats are addressed and mitigated.

�������� Security Requirements

• Authentication & Authorization (e.g., role-based access, MFA)

• Data Protection (e.g., encryption in transit and at rest)

• Input Validation (prevent injection attacks)

• Error Handling (no information leakage)

• Audit Logging (forensics, compliance)

🛠🛠 Tools

• Static Application Security Testing (SAST) – e.g., SonarQube, Fortify

• Dynamic Application Security Testing (DAST) – e.g., OWASP ZAP, Burp Suite

• Software Composition Analysis (SCA) – e.g., Black Duck, Snyk

• Threat Modeling Tools – e.g., Microsoft Threat Modeling Tool

• Security Linters – e.g., Bandit (Python), ESLint plugins for JS security

����� Techniques

• Threat Modeling (STRIDE, PASTA)

• Secure Coding Standards (e.g., OWASP Top 10, SEI CERT)

• Penetration Testing

• Automated Security Scanning in CI/CD Pipelines

• Defense-in-Depth Architecture (layered controls)

 2. Identify privacy requirements that inform software solutions to meet business
needs.

���� Common Privacy Requirements

• Data Minimization – collect only necessary data

• Purpose Limitation – use data only for intended business processes

• Consent Management – collect and track user consents (GDPR, CCPA)

• Right to Access/Delete – user data subject rights under privacy laws

• Data Retention Policies – automatic expiration of stored PII

• Anonymization/Pseudonymization – when full data is not needed

������ Relevant Regulations

• GDPR – Europe (rights of individuals, breach notification)

• CCPA – California Consumer Privacy Act

• HIPAA – U.S. healthcare

• FERPA, PCI-DSS, etc.

������ How They Inform Software Design

• Influence data models (e.g., tagging PII fields)

• Require privacy impact assessments (PIAs)

• May force specific encryption standards, logging redactions, etc.

 3. Identify potential constraints on functionality and systems integrations from
security controls.

��� Potential Constraints

• Performance Impacts – due to encryption, logging, scanning

• Delayed Deployment – extra testing or remediation cycles

• Third-Party Integration Issues – partners may not meet your security standard

• Legacy System Compatibility – may lack support for modern security controls

• User Friction – MFA, CAPTCHA, or consent prompts may reduce usability

• Data Sharing Restrictions – privacy laws may limit API or analytics integrations

���� Examples

• SSO implementation might require refactoring of auth logic

• Data masking may reduce analytics accuracy

• Rate-limiting for DDoS protection might disrupt bulk data transfers

Security Assessment

A software security assessment is an important part of the overall software development
life cycle. The assessment should be performed in the earliest phases of any new
production development initiative and should identify the following:

• How critical is the product to meeting the needs of customers?

• What security objectives are required by the product?

• Are there any regulations or policies that govern the product data?

• What threats are possible once the product has been deployed to customers?

Read chapter 3 "Security Assessment (A1): SDL Activities and Best Practices"
from Practical Core Software Security: A Reference Framework to better understand the
activities performed in a security assessment and why they are so important.

Secure Software Requirements for CSSLP

As with most organizations, there are multiple levels of development on the course to a
final project. Software security and development is no different. Software is written by
developers according to requirements defined by analysts and based on interviews with
customers and product owners; those requirements define business functions so that
technical staff can propose software solutions. Secure software requirements focus on
confidentiality, integrity, and availability of information within the product and are a subset
of the functional business requirements.

Watch the section "Discovering Secure Software Requirements" (00:30:53) from Secure
Software Requirements for CSSLP to learn more about gathering software requirements.

References

Henry, K. (2023, July 7). Secure software requirements for CSSLP® [Video]. PluralSight.
https://app.pluralsight.com/library/courses/secure-software-requirements-csslp-
cert/table-of-contents

Ransome, J., Misra, A. and Merkow, M. (2023). Practical core software security: A reference
framework. CRC Press.
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-
live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

https://lrps.wgu.edu/provision/355750374
https://lrps.wgu.edu/provision/449312621
https://app.pluralsight.com/library/courses/secure-software-requirements-csslp-cert/table-of-contents
https://app.pluralsight.com/library/courses/secure-software-requirements-csslp-cert/table-of-contents
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

Take a moment to think about what you learned in this lesson.

• The Security Assessment (A1) phase is the first phase of the security development
life cycle.

• During the Security Assessment (A1) phase, an initial project outline for security
milestones is developed and integrated into the development project schedule.

• During the Security Assessment (A1) phase, all key stakeholders should discuss,
identify, and have a common understanding of the security and privacy
implications, considerations, and requirements.

• The software security team should be included in the software development life
cycles (SDLCs) kick-off meetings to ensure that security is a key element of the
SDLC and built into the process.

• A privacy impact assessment should include the summary of the legislation,
required process steps, technologies and techniques, and any additional resources.

• Creating success criteria for any SDL phase makes it more effective and, in
postmortem, helps identify what worked and what didn't.

• Creating a key set of deliverables for each SDL phase allows for all required
activities to have tangible documented outcomes.

• In the SDL model, it is helpful to outline metrics that should be measured in each
and every phase.

• The three areas of focus in secure software requirements are gathering the software
requirements, data classification, and managing data protection requirements.

• The purpose of gathering the software requirements before a project kick-off is to
avoid common project failures by identifying requirements at the beginning of a
project.

• When identifying functional and non-functional requirements, consider the current
organization as well as future business needs.

• Operational requirements refer to how the system should function based on the
environment in which the system will operate.

• The three areas of compliance requirements are legal, financial, and industry
standards.

Key Terms

• functional requirements: requirements that describe what the system will do and
its core purpose

• non-functional requirements: requirements that describe any constraints or
restrictions on a design but do not impact the core purpose of the system

• privacy impact assessment: a process that evaluates issues and privacy impact
rating in relation to the privacy of personally identifiable information in the software

• product risk profile: helps to determine the actual cost of the product from
different perspectives

• requirement traceability matrix: a table that lists all of the security requirements

• Security Assessment (A1) phase: the first phase of the security development life
cycle in which the project team identifies the product risks and creates a project
outline for security milestones

• threat profile: the environment in which the product will operate and potential
threats in that environment

In this lesson, you will learn about the Architecture (A2) phase. During the Architecture
phase, the project team brings security considerations into the software development life
cycle (SDLC) to ensure threats, requirements, and potential pain points are addressed. The
initial security assessment has been completed and direction has been set. In this phase,
teams assess and scope security policies, perform threat modeling, and plan
countermeasures to attacks.

Consider the following learning objectives as you move through the lesson:

• Identify organizational policies to comply with when designing software solutions.

• Identify actions taken during each step in threat modeling for the analysis of
architecture security.

Architecture (A2)

The Architecture (A2) phase examines security in terms of business risks, with inputs from
the software security team and key stakeholders. During the Architecture phase (A2),
software security teams will review any policy not governed by internal SDL policies and
instruct product teams on what features and policies to implement. They will also assess
and scope internal SDL policies without disrupting product development teams. The most
important step in this phase, however, is threat modeling. In threat modeling, technicians
identify security objectives, survey applications, decompose applications, identify threats,
and identify vulnerabilities.

 Read chapter 4 "Architecture (A2): SDL Activities and Best Practices" from Practical Core
Software Security: A Reference Framework to better understand the activities performed in
a security assessment and their importance.

Threat Models Fundamentals

Organizations have cracks, and hackers know how to identify these vulnerabilities to
infiltrate an organization. Threat modeling requires a technician to think like an adversary.
The goal is to understand a threat and how to defend against it before it happens. Threat
modeling involves the use of a repeatable model to identify vulnerabilities so product
developers can eliminate them.

Watch Threat Modeling Fundamentals (01:29:00) to explore more about threat modeling.

Finding Threats Using STRIDE

Threat modeling is performed by diagramming a process and then identifying possible
threats to each element of the process. Technicians use data flow diagrams to create a
visual representation of all of the interactions with each element in the process. The
software security team then examines the data flow diagram to identify vulnerabilities.
STRIDE is an acronym in which each letter represents a type of threat to software. Using the
methodology allows the team to investigate each element in their data flow diagram for the
vulnerabilities represented by each letter of the acronym. The team may perform STRIDE-
per-element, which identifies threats for interactions with elements, or they may perform
STRIDE-per-interaction, which identifies threats for interactions between elements.

Watch the section "Finding Threats Using STRIDE" (00:19:38) from Performing Threat
Modeling with the Microsoft Threats Modeling Methodology in order to understand the
STRIDE methodology more.

PASTA Methodology

https://lrps.wgu.edu/provision/355750763
https://lrps.wgu.edu/provision/345367776
https://lrps.wgu.edu/provision/345367849

Another threat modeling methodology/acronym is PASTA. PASTA, or "process for attack
simulation and threat analysis," is a seven-step methodology that, again, gives a software
security team a repeatable framework for identifying threats and planning
countermeasures. Unlike other methodologies that focus on the identification of threats,
PASTA focuses on the probability of those threats and their corresponding impact. It
ensures that teams focus on threats that represent a real impact on their products.

Watch Perform Threat Modeling with the PASTA Methodology (01:04:00) to dive deeper into
the PASTA methodology.

References

Boyer, J. (2018, Oct 1). "Performing threats using STRIDE." Performing threat modeling with
the Microsoft threat modeling methodology [Video]. PluralSight.
https://app.pluralsight.com/course-player?clipId=a148b426-9b42-448b-8146-
c5d1338da3e9

 Mosmans, P. (2017, Aug 13). Threat modeling fundamentals [Video]. PluralSight.
https://app.pluralsight.com/library/courses/threat-modeling-fundamentals/table-of-
contents

 Pandey, P. (2020, Oct 19). Performing threat modeling with the PASTA methodology [Video].
PluralSight https://app.pluralsight.com/library/courses/performing-threat-modeling-
pasta/table-of-contents

 Ransome, J., Misra, A. and Merkow, M. (2023). Practical core software security: A reference
framework. CRC Press.
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-
live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

• The second phase of the security development life cycle involves bringing security
considerations into the software development life cycle.

• The software security policy defines what needs to be protected and how it will be
protected.

• Collaboration among the privacy function, the centralized group, or outside legal
counsel during software security design represents many organizations' best
practice.

https://lrps.wgu.edu/provision/345368329
https://app.pluralsight.com/course-player?clipId=a148b426-9b42-448b-8146-c5d1338da3e9
https://app.pluralsight.com/course-player?clipId=a148b426-9b42-448b-8146-c5d1338da3e9
https://app.pluralsight.com/library/courses/threat-modeling-fundamentals/table-of-contents
https://app.pluralsight.com/library/courses/threat-modeling-fundamentals/table-of-contents
https://app.pluralsight.com/library/courses/performing-threat-modeling-pasta/table-of-contents
https://app.pluralsight.com/library/courses/performing-threat-modeling-pasta/table-of-contents
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

• Threat modeling is a process to pinpoint security threats and potential
vulnerabilities that will help prioritize remediation.

• Threat modeling proactively prepares an organization for potential threats rather
than reacting after threats are discovered.

• Consider the business or organization to help determine the best approach for
threat modeling.

• The following five steps of threat modeling will help an organization better
understand how to best protect its assets: identify security objectives, survey the
application, decompose it, identify threats, and identify vulnerabilities.

• Data flow diagrams provide a visual representation of a process flow.

• Threats can be categorized by type: spoofing, tampering, repudiation, information
disclosure, denial of service, and elevation of privilege, which make up the acronym
STRIDE.

• PASTA methodology of threat modeling stands for the process of attack simulation
and threat analysis.

• After identifying threats, it is important to consider the design and implementation
aspects of your software application to rank threats and vulnerabilities to your
organization.

• Rank the organization's threats based on their probability and damage potential.

• The DREAD model is one of the most popular risk models. The DREAD model
consists of damage potential, reproducibility, exploitability, affected users, and
discoverability.

• The Web Application Security Frame (aka Application Security Frame) uses
categories to organize common security vulnerabilities with a focus on web
software applications.

• Trike is a framework for security auditing from a risk management perspective.

Key Terms

• application-centric threat modeling: threat models that start with visualizing the
application you are building

• asset-centric threat modeling: threat models focused around senior management and
protecting the assets of an organization

• application decomposition: determining the fundamental functions of an app

• Architecture (A2) phase: the second phase of the security development life cycle that
examines security from perspective of business risks

• data flow diagrams: a visual representation of the threat flow

• denial of service: denying access to valid users

• elevation of privilege: privileged access to resources for gaining unauthorized access to
information

• information disclosure: read a file that one was not granted access too

• PASTA: the process for attack simulation and threat analysis that gives a software security
team a repeatable framework for identifying threats

• repudiation: performing illegal operations in a system that lacks the ability to trace the
prohibited operations

• risk model: assess vulnerabilities during the software development process

• software security policy: defines what needs to be protected and how it will be protected

• spoofing: illegally accessing and using another user's credentials

• tampering: maliciously changing or modifying persistent data

• third party codes: reusable software developed externally from the organization's
platforms

• threat modeling: a process to pinpoint security threats and potential vulnerabilities that
will help prioritize remediation

• threat source: the entity carrying out the attack

• threat vector: the path an attacker can take to exploit a vulnerability

• Trike: a unified conceptual framework for security auditing

• vulnerability: a weakness that can be exploited

Section 2 introduced the first two phases of the Security Development Life Cycle (SDL). The
security assessment is where the project team identifies the product risk profile and what
SDL activities are needed.

The initial project outline for security milestones and controls is developed and integrated
into the overall project schedule to allow proper planning as changes occur. The
Architecture phase defines business requirements in terms of confidentiality, integrity, and
availability and also identifies privacy controls that must be implemented to prevent
leaking personally identifiable information (PII).

Security teams perform threat modeling in the Architecture phase by creating data flow
diagrams of business processes and identifying threats to each element of the product
design.

DREAD = Damage, Reproducibility, Exploitability, Affected users, Discoverability

Element Symbol Explanation

Trust
Boundary

Dashed line
Separates zones of differing trust (e.g., user →
app)

Data Flow
Solid line with an
arrow

Shows direction of data movement

Data Store
Two parallel horizontal
lines

Represents a storage mechanism (DB, file
system)

External
Element

Rectangle
An entity outside the system’s control (e.g., user,
3rd-party API)

Process
Circle or rounded
rectangle

Represents logic, computation, or
transformation

Section 3: Introduction

Have you wondered how organizations build and release software into the market,
especially organizations that handle personal identifiable information (PII) data like
insurance, healthcare, banks, and finance companies?

 There is a lot that goes into the design and development of these applications handling PII
data, especially regarding compliance and privacy rules. This section, Software Security
Test Plan, evaluates the components of a security test plan and identifies methods to
automate security testing. It provides an overview of the software security analysis tools,
including static analysis, dynamic analysis, fuzz testing, and code review. Based on the
outcome of the security test plan, you will learn more about the guidance on adjusting
security controls for developing secure software.

This section covers one competency in two lessons

 • Lesson 6: Security Test Planning

• Lesson 7: Security Test Case Execution

Build Employability Skills and Competence

This section will prepare you for careers within the software security test planning phase.
As you work through Section 3 to learn more about software security analysis tools, you will
gain an understanding of how to design and implement technical solutions, which will help
you as a developer to identify security weaknesses. You will gain knowledge and experience
in using popular application security tools such as SonarQube, OWASP Zed Attack Proxy,
and Snyk. As you build your confidence in the software security world, you will be able to
provide guidance, technical leadership, and direction to an application security team. The
skills you gain from this section will allow you to conduct reviews of security posture, which
will ensure that application systems are being operated securely. These dynamics will
reach many people as we live in an ever-changing, technology-driven society.

The skills covered in this section are:

1. Evaluate methods for testing the effectiveness and efficiency of information security
controls.

2. Implement static application security testing.

3. Describe information security controls.

In this section, you can demonstrate these skills by passing a final assessment that
measures whether you have mastered this competency:

• The learner evaluates software security test plan documentation and
implementation strategies.

Prepare for the Assessment

To prepare for the objective assessment, ask yourself these questions:

• Can I create and evaluate a security test plan?

• Can I determine the best software security analysis tool for my application?

• Can I make proper adjustments to the security of my software based on security test
plan results?

��� 1. Can I create and evaluate a security test plan?

Yes, if you can:

• Identify security objectives for the application (e.g., protect data, enforce roles)

• Select test types:

o Static analysis (SAST)

o Dynamic analysis (DAST)

o Manual penetration testing

o Fuzz testing

• Define test coverage:

o Input validation

o Authentication & access control

o Session management

o Error handling

• Include pass/fail criteria

• Prioritize tests by risk level

• Evaluate the plan by comparing:

o Test results vs. security requirements

o Whether critical vulnerabilities are covered

���� Tip: Reference the SDL A4 phase — Security Test Planning and Secure Code Review
deliverables are key here.

��� 2. Can I determine the best software security analysis tool for my application?

Yes, by knowing:

• SAST (Static Application Security Testing):

o Use before runtime

o Finds source code flaws

o Tools: SonarQube, Fortify, Checkmarx

• DAST (Dynamic Application Security Testing):

o Run while app is executing

o Finds runtime issues like XSS, SQLi

o Tools: OWASP ZAP, Burp Suite

• SCA (Software Composition Analysis):

o Finds third-party dependency risks

o Tools: Snyk, Black Duck

• Fuzzing Tools:

o Send random/malformed inputs to crash app

o Tools: Peach Fuzzer, AFL

���� Match the tool type to the stage in development and risk profile of your product.

��� 3. Can I make proper adjustments to the security of my software based on security
test plan results?

Yes, if you:

• Review test output critically:

o Prioritize high-severity vulnerabilities (e.g., RCE, injection)

o Fix issues based on threat modeling results

• Apply secure coding techniques:

o Input validation (e.g., whitelist)

o Use prepared statements to prevent SQLi

o Set secure session timeouts

• Re-test after applying fixes

• Update documentation and risk registers

• Loop findings into continuous integration pipeline

���� Use the test results to guide code remediation, re-testing, and post-release patch
planning (ties into SDL PRSA1–PRSA5).

��� 1. Evaluate the components of a security test plan

A Security Test Plan defines how to validate that software meets its security objectives. It
must cover:

�������� Key Components:

Component Description

Test objectives
What security goals are being validated (e.g., auth, access
control, data)?

Scope What modules/functions are covered (APIs, DBs, login systems)?

Test types & tools Which types of testing:

 - SAST: code-level static analysis

 - DAST: black-box runtime testing

Component Description

 - Fuzzing: random input testing

 - Manual pen tests: real-world exploitation

Roles &
responsibilities

Who executes the tests, who fixes bugs

Pass/fail criteria When is a test considered successful? Severity thresholds?

Schedule & frequency When and how often testing will occur (e.g., CI/CD pipeline)?

Remediation steps How vulnerabilities are prioritized and addressed

Re-test and
verification

Retesting to ensure issues are resolved and haven’t regressed

���� Related SDL Phases: A4 (Security Testing), A3 (Secure Code Review)

��� 2. Identify methods to ensure defense in depth software controls

Defense in Depth = Layered security controls to reduce risk if one layer is bypassed.

���� Key Methods:

Layer Example Defense Controls

Input layer (User →
App)

- Input validation, encoding, CAPTCHA

Authentication - Multi-factor authentication (MFA)

Authorization - Role-based access control (RBAC), least privilege

Data protection - Encryption at rest/in transit (TLS, AES), tokenization

Application logic - Secure session handling, no hardcoded secrets

Codebase - Static analysis, secure libraries only

Network - Firewalls, API gateways, segmentation

Monitoring & Logging - Audit trails, SIEM alerts, tamper-resistant logs

Post-deployment
- Patch management, vulnerability scanning, bug bounty
programs

��� SDL Tie-In:

• Applied across all phases: from threat modeling (A2) to code review (A3) to
patching (PRSA).

• Defense-in-depth ensures no single point of failure exists.

Design and Development (A3)

Functional and design specifications help to establish best practices during the Design
and Development (A3) phase of the SDL. During the Design and Development phase, you
complete analysis and tests in order to make informed decisions about how to deploy your
software security. This is when you will establish best practices to detect and remove
security and privacy issues. To do this successfully, look at a compliance analysis,
including policies from outside organizations that set security and privacy requirements.

This lesson discusses the various security testing methods and how to prepare a security
test plan to validate the secure implementation of a product. It also reviews updates to the
threat model, privacy assessment, and completion of a security analysis and review.

Read chapter 5 "Design and Development (A3): SDL Activities and Best
Practices" from Practical Core Software Security: A Reference Framework.

Secure Software Considerations

Developing security controls is an essential component in secure software design. This
video shows the considerations that go into developing controls in a software project.

Watch "Secure Software Considerations" (00:44:31) from Secure Software Architecture
and Design for CSSLP to learn more about controls.

Security Test Cases

There are many types of security test cases to explore. These include:

• Testing the box

• Vulnerability assessment and penetration testing

• Scanning

• Ongoing testing

• Environment testing

This lesson explains how to develop security test cases and build a testing strategy for
systems-related and non-systems-related functions. Additionally, it details the execution
of a test plan, including the importance of documentation, verification, and validation.

https://lrps.wgu.edu/provision/355751325
https://lrps.wgu.edu/provision/355751325
https://lrps.wgu.edu/provision/449314593

Watch the section "Develop Security Test Cases" (00:58:02) from CSSLP Software Security
Testing to learn more. Please note: You will watch the rest of this video later on in this
section.

References

Henry, K. (2020, Nov 19). Secure software testing for CSSLP® [Video]. PluralSight
https://app.pluralsight.com/course-player?clipId=eca4bc1d-0432-4b71-8ee6-
dc871c5d0ad3

Henry, K. (2023, Aug 9). Secure software architecture and design for CSSLP® [Video].
PluralSight.
https://app.pluralsight.com/library/courses/secure-software-architecture-design-csslp-
cert/table-of-contents

Ransome, J., Misra, A. and Merkow, M. (2023). Practical core software security: A reference
framework. CRC Press.
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-
live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

https://lrps.wgu.edu/provision/355756640
https://app.pluralsight.com/course-player?clipId=eca4bc1d-0432-4b71-8ee6-dc871c5d0ad3
https://app.pluralsight.com/course-player?clipId=eca4bc1d-0432-4b71-8ee6-dc871c5d0ad3
https://app.pluralsight.com/library/courses/secure-software-architecture-design-csslp-cert/table-of-contents
https://app.pluralsight.com/library/courses/secure-software-architecture-design-csslp-cert/table-of-contents
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

Take a moment to think about what you learned in this lesson.

• During the A3 phase, any policy that exists outside of the SDL policy is reviewed.

• Both the software security group and the centralized information security group
must collaborate on all policies and guidelines.

• The purpose of testing activities is to validate the security of software before making
the product available.

• The goal is to build security in, which is less costly than correcting problems
discovered after the software has been deployed.

• The test environment should mimic the execution environment as closely as
possible.

• Software security testing techniques are categorized by white box, gray box, or black
box testing.

• Developers test their systems to ensure that their code is working properly; this is
known as alpha testing.

• External testing, known as beta testing, allows you to check usability and
vulnerabilities in a system.

• Security test cases allow a software developer to determine security issues at the
lowest level.

• The process of scanning involves identifying deficiencies anywhere around the
system.

• Security testing is not static; it is ongoing.

• Applications need to be tested not only in the lab or development area but also in
their true operational environment.

Key Terms

• alpha level testing: testing done by the developers themselves

• beta level testing: testing done by those not familiar with the actual development
of the system

• black box testing: tests from an external perspective with no prior knowledge of the
software

• Design and Development (A3) phase: the third phase of the security development
life cycle, in which you analyze and test software to determine security and privacy
issues as you make informed decisions moving forward with your software

• external resources: resources hired on a temporary basis to come into a project,
test the application, and report findings

• functional testing scripts: step-by-step instructions for a specific scenario or
situation

• gray box testing: analyzes the source code for the software to help design the test
cases

• internal resources: resources from the company's organization

• secure testing scripts: scripts created specifically for the application being tested

• scripts: detailed, logical steps of instructions to tell a person or tool what to do
during the testing

• system test: test the system and its interaction with other systems

• white box testing: tests from an internal perspective with full knowledge of the
software

• vulnerability assessments: examining a product to identify security deficiencies

��� D487 BOOK-ALIGNED: Evaluating Software Security Analysis Tools

1. Static Analysis Tools (SAST)

• Analyze source or binary code without executing it.

• Used early in the SDL (Design/Implementation phase).

• Detects syntax issues, insecure coding patterns, and known flaws.

• Tools: Fortify SCA, SonarQube, Checkmarx.

���� Best for identifying issues before code runs. Can be automated in CI/CD.

2. Dynamic Analysis Tools (DAST)

• Analyze running applications.

• Simulate real-world attacks during execution.

• Detects runtime issues like authentication failures, session hijacking, injection
attacks.

• Tools: OWASP ZAP, Burp Suite, IBM AppScan.

���� Use during testing phases (after build). Complements static analysis.

3. Fuzz Testing

• Sends unexpected, malformed, or random inputs to app interfaces.

• Finds unknown, zero-day vulnerabilities, especially in input handling.

• Good for: Crash resistance, memory corruption, buffer overflows.

• Tools: AFL, Peach Fuzzer.

���� Use for complex or legacy systems where source code isn’t easily auditable.

4. Code Review (Manual/Peer Review)

• Involves human inspection of code.

• Identifies logic flaws, architecture issues, security assumptions.

• Formal or informal. Can be checklist-based or tool-assisted.

���� Catches what tools may miss. Encourages developer accountability.

��� Book-Aligned: Adjusting Security Controls Based on Test Plan Results

Let’s say the Security Test Plan from SDL testing reveals issues. Here's how you’d adjust
security controls:

Test Plan Finding Recommended Control Adjustment SDL Phase

Unvalidated input leads to
XSS

Add input validation and output
encoding filters

Development

Weak password policy
discovered via dynamic
analysis

Enforce strong password complexity +
rate limiting

Architecture/Design

Static tool shows hardcoded
secrets in source code

Migrate secrets to secure
storage/vaults (e.g., HashiCorp Vault)

Implementation

Fuzzing causes app crash
Improve exception handling and error
sanitization

Development

Manual review reveals flawed
role-based access control

Redesign RBAC logic; apply principle
of least privilege

Architecture/Design

DAST detects unpatched
vulnerable component

Update dependencies and re-run
software composition analysis (SCA)

Verification/Testing

��� Summary (Straight from SDL/Book Context)

• Static Analysis = early detection, fast feedback, code-level issues.

• Dynamic Analysis = runtime behavior, auth/session/input bugs.

• Fuzzing = random chaos testing for unexpected edge cases.

• Code Review = logical flaws and best practice enforcement.

• Adjustments must be mapped to SDL phases and follow defense-in-depth.

Design and Development (A4)

As you move into Phase 4 of the SDL, you begin to gather information regarding Design and
Development (A4). This is a continuation of Phase 3, where the elements of security test
case execution are described. This lesson outlines how to document the key success
factors for completion of Phase A4 and identifies why it is important to include security
testing as part of quality assurance (QA) testing so the security team can focus on
advanced threats cases. It also describes the various code-review techniques and how
they can be very cost-effective in locating and fixing security vulnerabilities in the early
stages of development.

Read chapter 6 "Design and Development (A4): SDL Activities and Best
Practices" from Practical Core Software Security: A Reference Framework.

Modern Dynamic Application Security Testing

AppSec is the overall process of identifying, fixing, and preventing security vulnerabilities
within the application level, which is a crucial part of the software development life cycle.
In this video, Scott Gerlach – a CSO and co-founder of StackHawk who was previously the
senior security architect at GoDaddy – introduces you to the issues with AppSec and how
to use static code analysis and dynamic code analysis. This helps developers get a head
start on their Continuous Integration/Continuous Delivery (CI/CD) pipeline by introducing
these tools early on in the software development life cycle.

Watch Modern Dynamic Application Security Testing (00:13:00) by DevSecCon.

Code Review Best Practices

Andrejs Doronins describes code review as an amplifier because it amplifies both the good
and the bad aspects of your application during the software development process. A pull
request (PR) is a request to merge your code into another branch, which can have both
benefits and drawbacks, depending on the situation.

This video will help you establish a process for doing code reviews while providing tips to
review effectively. It also discusses the benefits of small pull requests and the downsides
of big pull requests and describes the particularities of pull request feedback review
comments and how to handle challenging code review situations.

Watch Code Review: Best Practices (01:22:00) by Andrejs Doronins to learn more about
the importance of code reviewing.

https://lrps.wgu.edu/provision/355751573
https://lrps.wgu.edu/provision/355751573
https://lrps.wgu.edu/provision/345368588
https://lrps.wgu.edu/provision/345368633

Secure Software Testing for CSSLP

As you learn more about developing a test strategy, consider how this helps in tracking the
test case and test scenarios in a test plan. The information in this video will discuss
nonfunctional tests that cover the following:

• Infrastructure

• Operating environments

• Performance

• Reliability

• Scalability

The most important aspect of testing is test data, but it can be a challenge to ensure that
the test data is complete, thorough, and accurate. The test data also must be stored
securely and in a way that will maintain its integrity.

Watch the sections "Course Overview" (00:01:27), "Developing and Acquiring Test Data"
(00:31:55), and "Executing the Test Plan" (00:23:01) from Secure Software Testing for
CSSLP to learn more about developing test data and executing a plan.

Writing Custom Scripts

OWASP Zed Attack Proxy is one of the most commonly used open-source security tools.
Therefore, the ability to script and program using this tool will elevate any software security
developer. As you watch this video, you will review topics such as setting up the
environment for OWASP ZAP using the Firefox browser with add-ons and the need for
scripting to be able to perform customized testing as per users' requirements. Demos will
be provided on how to check for request-response tampering, scripting authentication
scenarios, generating custom payloads, and regressing security vulnerabilities.

Watch Writing Custom Scripts for OWASP Zed Attack Proxy (02:55:00) to explore more
about writing custom scripts.

https://lrps.wgu.edu/provision/360287302
https://lrps.wgu.edu/provision/360287836
https://lrps.wgu.edu/provision/360288215
https://lrps.wgu.edu/provision/345368862

SonarQube is an open-source platform that can perform automatic reviews with static
analysis of code to detect bugs, code smells, and security vulnerabilities in over 25
programming languages. As you watch this video, you will learn more about how
SonarQube helps the DevOps team generate a high-quality base of code and how the
components interact to perform static code analysis. You will explore the steps in installing
and configuring SonarQube with a sample project running the analysis and reviewing the
results. At the end of the video, resources will be provided for finding information related to
SonarQube plug-ins and documentation.

Watch Application Analysis with SonarQube (00:34:00) for more information.

References

Gerlach, S. (13 minutes). Modern dynamic application security testing [Video]. PluralSight.
https://app.pluralsight.com/library/courses/devseccon24-modern-dynamic-application-
security-testing/table-of-contents

Doronis, A. (2021). Code review: Best practices [Video]. PluralSight.
https://app.pluralsight.com/library/courses/code-review-best-practices/table-of-contents

Gunasekaran, M. (2019). Writing custom scripts for OWASP Zed Attack Proxy [Video].
PluralSight.
https://app.pluralsight.com/library/courses/writing-custom-scripts-owasp-zed-attack-
proxy/table-of-contents

 Henry, K. (2020, Nov 19). Secure software testing for CSSLP® [Video]. PluralSight.
https://app.pluralsight.com/course-player?clipId=eca4bc1d-0432-4b71-8ee6-
dc871c5d0ad3

 Ransome, J., Misra, A. and Merkow, M. (2023). Practical core software security: A reference
framework. CRC Press.
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-
live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

Smight, G. (2022, Sept 26). Application analysis with SonarQube [Video]. PluralSight.
https://app.pluralsight.com/library/courses/sonarqube-application-analysis/table-of-
contents

https://lrps.wgu.edu/provision/345368965
https://app.pluralsight.com/library/courses/devseccon24-modern-dynamic-application-security-testing/table-of-contents
https://app.pluralsight.com/library/courses/devseccon24-modern-dynamic-application-security-testing/table-of-contents
https://app.pluralsight.com/library/courses/code-review-best-practices/table-of-contents
https://app.pluralsight.com/library/courses/writing-custom-scripts-owasp-zed-attack-proxy/table-of-contents
https://app.pluralsight.com/library/courses/writing-custom-scripts-owasp-zed-attack-proxy/table-of-contents
https://app.pluralsight.com/course-player?clipId=eca4bc1d-0432-4b71-8ee6-dc871c5d0ad3
https://app.pluralsight.com/course-player?clipId=eca4bc1d-0432-4b71-8ee6-dc871c5d0ad3
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1
https://app.pluralsight.com/library/courses/sonarqube-application-analysis/table-of-contents
https://app.pluralsight.com/library/courses/sonarqube-application-analysis/table-of-contents

Take a moment to think about what you learned in this lesson.

• During the A4 phase, any policy that exists outside the domain of the SDL policy is
reviewed.

• Quality assurance testing occurs throughout the entire SDLC process.

• The three specific test type categories are benchmarks, scheduled tests, and
exploratory tests.

• Code review finds and fixes a large number of security issues before the code is
tested or shipped.

• The four basic techniques for code review are automated scanning, manual
penetration testing, static analysis, and manual code review.

• AppSec describes finding, fixing, and preventing vulnerabilities at the application
level.

• AppSec is difficult to scale for large organizations.

• The goal of code review is to catch bugs early on to decrease the cost of fixing them.

• Proxy scripts are effectively used to communicate a web security bug or web
security control.

• Active and passive scanner scripts identify common vulnerabilities that are specific
to your application.

• SonarQube gives developers the ability to continuously inspect the quality of code
they produce.

Key Terms

• abstract syntax tree (AST): the basis for software metrics and issues to be
generated at a later stage

• active scanner: modifies the hypertext transfer protocol secure (HTTPS) inputs and
analyzes the response to identify vulnerabilities

• AppSec: the process of finding, fixing, and preventing security vulnerabilities at the
application level

• benchmarks: tests used to compare estimates to actual results

• code review: a process done to identify security vulnerabilities during software
development

• control flow analysis: the mechanism used to step through logical conditions in
the code

• data flow analysis: the mechanism used to trace data from the points of input to
the points of output

• Design and Development (A4) phase: the fourth phase of the security
development life cycle, in which you will build onto the proper process of security
testing and continue to analyze necessities at the security level

• documentation: details and guides that are necessary to support the ongoing use
of the software

• dynamic analysis: application security testing to identify vulnerabilities within a
product application

• exploratory tests: done by the development tester to continually assess the quality
of his or her work

• Open Source Security Testing Methodology Manual: a manual that provides
templates and standards used when developing a test strategy

• OWASP Zed Attack Proxy: an open-source security tool used widely by software
security developers

• passive scanner: silently analyzes all the hypertext transfer protocol (HTTP)
requests and responses passing through the web application security tool

• pull request: a request to merge your code into another branch

• scheduled tests: mandatory requirements testing to validate the security of the
software and associated system(s)

• SonarQube: open-source platform for static code analysis that can detect bugs,
code smells, vulnerabilities, and hotspots in over 25 programming languages.

• spider: identifies inputs and supplies those to the scanning components of the
security tool

• static analysis: analysis of computer software that is performed without actually
executing programs

• Zed Attack Proxy (ZAP): free, open-source penetration-testing tool

�������� D487 - Software Testing & Deployment (Lessons 8–10)

Phase Covered: Ship (A5) + Post-Release Support
Competency: Ensuring product readiness & maintaining security post-release

���� Lesson 8: Determining Product Readiness

Goal: Ensure all final security tasks are completed before shipping.

Task Description

���� Final Security Review
Comprehensive check for policy compliance and threat
closure

���� Vulnerability Scan
Run tools to find known weaknesses (e.g., outdated libs,
misconfigs)

���� Penetration Testing Simulate attacks to test product resilience

���� Privacy Review
Ensure data collection, storage, transfer complies with
privacy laws

���� Open-Source Licensing
Review

Check for OSS license conflicts (GPL, MIT, etc.) before
release

��� Output:

�� Product marked as ready to ship

�� Final signoff by Security & Product Teams

���� Lesson 9: Post-Release Security Issues

Goal: Handle vulnerabilities and incidents after launch

Activity Purpose

���� Incident Response
Planning

Predefine what to do when a breach or bug is reported

Activity Purpose

���� Vulnerability Disclosure
Policy

Tells customers & researchers how to report security bugs

���� Patch Management
Process

Ensures fast deployment of security fixes to users

���� Customer
Communication

Must be clear and prompt if vulnerabilities affect data or
functionality

Real-world Tip:
Your team must act fast and responsibly — this is where your reputation is tested.

����� Lesson 10: Adapting to Security Frameworks and Models

Goal: Make sure your process aligns with industry-recognized models.

Framework/Model Why It Matters

���� NIST Cybersecurity
Framework

Defines secure practices for identify, protect, detect,
respond, recover

���� OWASP Top 10
Must be checked pre- and post-release; addresses most
common vulnerabilities

Microsoft SDL
WGU course SDL model — aligns with Ship/Post-Release
phases

ISO/IEC 27001 Used for compliance/security maturity in larger orgs

���� Final Exam Hot List

��� Know these for sure:

•
���� Final Security Review components (scan, pentest, OSS license check, privacy)

•
���� Post-release vulnerability handling process

•
���� Incident response basics

•
���� Security frameworks: NIST, OWASP Top 10

•
���� Ship = last check before release

•
���� Post-Release = response, patch, communicate

���� Quick Visual: Ship vs Post-Release

SDL Phase Key Activities

���� Ship (A5) Final reviews, scans, testing, signoff

���� Post-
Release

Incident response, patching, customer communication, vulnerability
management

���� D487 Section 4 – Build Employability Skills & Competence

��������� Why This Matters (Career-wise)

Cybersecurity threats are evolving. Employers need developers who can build AND
secure software.

���� You will be tested on real-world readiness:
Can you build, test, and release secure software?

���� Skills Covered in This Section

���� Skill

���� On
Final?

����� What It Means

Develop standards/methods for secure
development
���� Yes

Create checklists or practices to ensure
code is safe, reliable, and release-ready

Evaluate mitigation/remediation based
on risk

���� Yes
Choose the right fix for a vulnerability
depending on how bad the risk is

Determine incident response steps
and root cause
���� Yes

Know what to do when a security issue
occurs and why it happened

Apply software roles within an agile
development environment

���� Yes
Understand how security fits into
sprints, standups, and agile team roles

��� What You Need to Know for the Final Assessment

Prep Question

���� Must
Know?

�� Quick Explanation

Can I ensure that my software or application
is ready to be released?

���� Yes
Know the Ship Phase tasks (Final
security review, OSS review, etc.)

Can I identify the best techniques to identify
vulnerabilities of my software or application?

���� Yes
Master static analysis, dynamic
analysis, fuzzing, manual
review

Can I complete thorough vulnerability
scanning to ensure that my software or
application is secure?

���� Yes
Use automated tools like
SonarQube, OWASP ZAP,
Nessus, etc.

Can I use the security development
framework to ensure that my software is
secure?

���� Yes
Understand the SDL phases and
how security is embedded
throughout

���� Assessment Tip Breakdown

Topic What You Should Know

���� SDL Model
Each phase (especially Ship + Post-Release), roles, artifacts,
goals

���� Agile + Security
How dev roles like Scrum Master or Product Owner tie into
SDL

���� Threat Modeling STRIDE model basics; how to identify threats at design time

���� Testing Techniques Pros/cons of Static vs. Dynamic vs. Fuzz vs. Manual reviews

���� Vulnerability
Management

How to rank, triage, and respond to vulns based on risk level

���� Incident Response
Steps to take post-breach: detection → mitigation → disclosure
→ patch

���� Test Readiness Self-Check (must answer YES to all)

• ☐ I know how to prepare software for secure release.

• ☐ I can evaluate and select the right vulnerability scanning techniques.

• ☐ I understand mitigation vs remediation.

• ☐ I can map SDL and Agile frameworks together.

• ☐ I can confidently explain what happens after release (post-release support).

���� What Happens in the Ship (A5) Phase?

Activity Purpose

���� Final Policy Compliance
Analysis

Confirms the software meets internal policies, industry
standards, and laws

���� Final Security Review Ensure that all security risks are addressed before release

���� Final Privacy Review
Check for PII compliance, data handling, and privacy laws
(e.g., HIPAA, GDPR)

���� Final Security Testing Plan
Plans out tests like pen tests, fuzzing, and scan verification
before go-live

���� Security Communication
Plan

Define how support and customer service are informed of
security concerns

���� Release Approval
Decision

Based on all findings above — if all are clean, the product is
approved for shipping

���� Learning Objective 1: Evaluate Criteria for Product Release

To approve a release, all of the following must be successfully completed:

�� Final security & privacy review

�� Policy compliance pass

�� No critical unpatched vulnerabilities

�� Risk level is acceptable (documented & mitigated)

�� Customer support team is trained on known security issues

���� This will be on the final exam — know what counts as "release ready."

���� Learning Objective 2: Identify a Strategy or Technique to Remediate Vulnerabilities

���� Remediation Technique Example

Input validation Filter/sanitize all user inputs (e.g., form fields)

���� Remediation Technique Example

Patch vulnerable libraries
Update open-source dependencies with security
patches

Replace insecure authentication Use MFA or OAuth2 instead of simple login forms

Apply least privilege Restrict access to sensitive data and code modules

Implement encryption at rest/in-
transit

Protect data in storage and during communication

���� Final test will include questions where you must choose the correct mitigation
strategy for a given scenario.

��� Summary for Test Prep

Topic

���� On
Test

����� Know This

Final SDL Ship Tasks
���� Yes
Security review, privacy check, policy
analysis, testing plan

Release Approval Criteria
���� Yes
All issues mitigated or accepted, support
team informed

Remediation vs. Mitigation
Techniques

���� Yes
Be able to match fix strategy to vulnerability
scenario

Communication Plan
Importance

Maybe How support teams get info post-launch

Ship (A5)

The Ship (A5) phase of the security development life cycle takes place in the last phase of
the software development life cycle when the organization is preparing to release the
product. Security teams perform policy compliance analysis, vulnerability scans,
penetration testing, open-source licensing reviews, a final security review, and a final
privacy review to determine whether the product is ready to release to customers.

Read chapter 7 "Ship (A5): SDL Activities and Best Practices" from Practical Core Software
Security: A Reference Framework for more information on this phase of the SDLC.

Conducting Network Vulnerability Analysis

Conducting network vulnerability analysis is the process of discovering, identifying, and
classifying vulnerabilities and how much of a threat they are to customers. This is crucial to
the SDLC, as it impacts the SDL immensely. As network vulnerability analysis is conducted,
developers need to evaluate threats and begin to incorporate solutions into their
applications. This portion of the lesson covers preparing an analysis toolkit, getting into the
hacking mindset, harvesting data using internet resources, and executing vulnerability
scans.

Watch Conducting Network Vulnerability Analysis (02:28:00) to learn more.

Assessing the Impact of Web Application and Vulnerabilities

Web applications can be very susceptible to attack due to their availability and the way
they communicate. This lab demonstrates how to assess site and database functionality
and how to test vulnerabilities, concentrating on SQL injection and authentication.

Complete Assessing the Impact of Web Application and Vulnerabilities from Infosec
Learning.

Analyzing Output from Web Application

SQL injection and authentication are two of the most prevalent security threats to modern
web applications, but they are not the only ones. This lab demonstrates how to analyze
output from web applications. It covers configuration of an intercept proxy, inspecting
header and session data, testing command injection, submitting fuzzy input, and running a
vulnerability scanner.

https://lrps.wgu.edu/provision/355751926
https://lrps.wgu.edu/provision/345369123
https://lrps.wgu.edu/provision/298555558

Complete Analyzing Output from Web Application Assessment Tools from Infosec
Learning.

References

Analyzing output from web application assessment tools. (2023). Infosec Learning, Inc.
https://lab.infoseclearning.com/course/PUVFALSIHK/lab/PVYKKYMZIC?check_logged_in=
1

Assessing the impact of web application vulnerabilities. (2023) Infosec Learning, Inc.
https://lab.infoseclearning.com/course/PUVFALSIHK/lab/ODGYGUDDQR?check_logged_i
n=1

 Cardwell, K. (2017). Conducting network vulnerability analysis [Video]. PluralSight.
https://app.pluralsight.com/library/courses/network-vulnerability-analysis-
conducting/table-of-contents

 Ransome, J., Misra, A., and Merkow, M. (2023). Practical core software security: A
reference framework. CRC Press.
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-
live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

https://lrps.wgu.edu/provision/298556039
https://lab.infoseclearning.com/course/PUVFALSIHK/lab/PVYKKYMZIC?check_logged_in=1
https://lab.infoseclearning.com/course/PUVFALSIHK/lab/PVYKKYMZIC?check_logged_in=1
https://lab.infoseclearning.com/course/PUVFALSIHK/lab/ODGYGUDDQR?check_logged_in=1
https://lab.infoseclearning.com/course/PUVFALSIHK/lab/ODGYGUDDQR?check_logged_in=1
https://app.pluralsight.com/library/courses/network-vulnerability-analysis-conducting/table-of-contents
https://app.pluralsight.com/library/courses/network-vulnerability-analysis-conducting/table-of-contents
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

LESSON 8
Take a moment to think about what you learned in this lesson.

• The Ship (A5) phase of the SDLC occurs when the security team performs its final
analysis and security review on the applications or software.

• Policy compliance analysis verifies the product meets quality standards before the
release of an application or software.

• Vulnerability scanning tools attempt to identify weakness in the applications.

• Penetration testing simulates the actions of a hacker to attempt to identify
vulnerabilities within the software.

• The four phases of penetration testing are: assess, identify, evaluate and plan, and
deploy.

• Active and passive analysis techniques are both useful during vulnerability testing.

• Creating a networking laboratory allows you to test within a controlled environment
without written authorization and permissions.

• NMap is a popular network scanning tool.

• There are many techniques that can be used to discover vulnerabilities; it is
important to consider which technique will be best for your software or application.

Key Terms

• authenticated scans: scans that require software to log onto a system to scan it

• external scans: scans that target security issues that are found outside the firewall

• internal scans: scans to identify security issues that a malicious attacker could
exploit from inside the network

• intrusive target search: scans to exploit a vulnerability when it is identified

• Nmap: a tool used for network scanning and security auditing

• open-source software license compliance: regulations regarding the software
licensing of in-house products

• open-source software security: identifying software security within in-house
developed software

• penetration testing: an authorized attack of an application to determine its
weaknesses

• range: a networking laboratory created to conduct vulnerability analysis testing

• Ship (A5) phase: the fifth phase of the security development lifecycle that verifies
that the product complies with security policies

• SQL injection: a code injection that might destroy your software

• target machine: a virtual space to practice identifying attack surfaces of the
machine

• virtualization: technology used to create software services

• vulnerability scan: explore application and databases to attempt to identify
weaknesses

• vulnerability sites: websites with information on the latest known vulnerabilities

��������� What Are PRSAs?

Post-Release Support Activities (PRSA) are security tasks performed after the product
has been released to customers. These activities maintain and monitor security as users
interact with the application in the real world.

����� Key PRSA Deliverables

Deliverable Purpose

���� External Vulnerability
Disclosure Report

Public-facing process to disclose security issues found
post-release.

���� Third-Party Security
Reviews

External auditors verify that the application meets
compliance/security standards.

���� Post-Release Certifications
Formal certifications (e.g., ISO/IEC 27001) confirming
security posture.

���� Internal Reviews (New
Combos/Cloud)

Evaluate new deployments like cloud hosting or
product integrations.

���� Security Architecture
Reviews

Reassess system architecture after release or platform
changes.

���� Tool-Based Assessments
Continuous scanning/monitoring tools to detect
vulnerabilities in production.

����� Learning Objective: Determine the Cause and Response to a Post-Release Security
Incident

���� Steps in Post-Release Incident Response

1. Detection

o Use monitoring tools, logs, or customer reports to identify anomalies or
breaches.

2. Analysis

o Determine the root cause: Was it a coding flaw? A configuration issue? A
credential leak?

3. Containment

o Isolate the affected system or user accounts to stop the damage.

4. Mitigation / Remediation

o Apply hotfixes, patches, or configuration changes.

o Roll out updated versions or disable vulnerable features temporarily.

5. Notification

o
���� Inform customers, partners, and compliance bodies as required by law
or policy (e.g., GDPR, HIPAA).

6. Postmortem / Documentation

o Record lessons learned, update policies, and strengthen tools or team
response.

���� Final Exam Focus

You will be tested on:

•
���� What PRSA tasks happen after a product is released

•
���� What documents/reviews/certifications are involved

•
���� How to identify and respond to a post-release vulnerability or security
incident

•
���� The order of response: Detect → Analyze → Contain → Remediate → Notify →
Document

��� Summary Table: PRSA Breakdown

Category Key Task

���� Disclosure External vulnerability report

���� Review & Audit 3rd party review, internal review, architecture analysis

���� Continuous Monitoring Tool-based assessments post-release

���� Incident Response Determine cause, patch, notify, and document the event

 Post-Release Support

The Post-Release Support phase of the security development life cycle is where
organizations prepare for vulnerabilities that are identified after the product has been
released to customers, including vulnerabilities found in both managed and unmanaged
codebases.
Key stakeholders are identified, customer communication plans are established, and a
process for handling newly discovered vulnerabilities is defined.

Read chapter 8 "Post-Release Support (PRSA1-5)" from Practical Core Software Security: A
Reference Framework to learn more.

Reference

Ransome, J., Misra, A., and Merkow, M. (2023). Practical core software security: A reference
framework. CRC Press.
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-
live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

LESSON 9

Take a moment to think about what you learned in this lesson.

• Having software security experts report to the engineering organization allows for a
stronger relationship during the software security development process.

• Quality security is built throughout the entire engineering process, not in just one
phase of the development life cycle.

• Not every company will be able to include all PRSAs, so consider which has the
highest value to your organization and how to optimize the tools you do have access
to.

• CVSS is a model that is used to assess the severity of a vulnerability.

• Post-release privacy issues may need additional development, quality assurance,
and/or security resources.

• Third-party reviews may be necessary when completing a post-release review.

• During a company's merger or acquisition, software security may go under
architectural review to identify any changes that will need to take place once the
merger or acquisition is complete.

https://lrps.wgu.edu/provision/355752294
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

• Requirements for post-release certifications should be included in security and
privacy requirements before deployment.

Key Terms

• Common Vulnerability Scoring System (CVSS): a model used to assess the
severity of a vulnerability

• legacy code: old code that is no longer supported

• merger and acquisition (M&A): when companies consolidate

• Product Security Incident Response Team (PSIRT): the team that receives,
investigates, and reports security vulnerabilities

• Post-Release Support phase: the phase of the SDLC in which organizations
prepare for vulnerabilities after the product has been released

• Post-Release PSIRT Response: responds to software product security incidents
that involve the external discovery of post-release software vulnerabilities

• Software Security Champion (SSC): an expert on promoting security awareness,
best practices, and simplifying software security

• Software Security Evangelist (SSE): an expert to promote awareness of products
to the wider software community

��������� D487 – Adapting SDL to Organizational Environments

����� Lesson Goal:

Learn how to integrate the SDL into modern environments like Agile and DevSecOps, and
recognize how deployment models and security maturity affect SDL execution.

���� Top 4 Environments for Deployment

Environment What to Know

���� On-
premises

Internal control, but requires full SDL responsibility

���� Cloud
Focus on shared responsibility model (provider handles infra, you secure
code)

���� Hybrid
Combines on-prem and cloud — adds complexity to threat modeling &
policy

���� Mobile/IoT High risk: small devices, weak controls, frequent updates needed

���� You must know which environment affects which security choices — especially in
threat modeling, testing, and deployment.

���� Key Success Factors by SDL Phase

Phase Key Deliverables / Success Factors

���� Requirements Risk rating, compliance checklists, security goals

���� Design Threat models, data flow diagrams, STRIDE mapping

���� Implementation Secure coding standards, peer review, static code analysis

���� Verification Security testing (DAST, fuzzing), tool results reviewed

���� Release (Ship) Final review, open-source license check, policy compliance

Phase Key Deliverables / Success Factors

���� Post-Release Incident response plan, vuln management, tool-based monitoring

��� Adapting SDL to Agile

SDL Element How it fits in Agile

���� Security stories Add to backlog alongside user stories

���� Security tasks per
sprint

Break SDL into sprint-aligned tasks (e.g., threat modeling per
feature)

���� Security Champion
Role

Internal security advocate in each scrum team

���� Secure CI/CD Pipeline Automated scans at each integration point

���� Agile ≠ No security. It just means shorter, iterative SDL cycles.

����� Adapting SDL to DevSecOps

DevSecOps Practice SDL Integration

���� Automated testing Integrate SAST/DAST in CI/CD

���� Continuous
compliance

Enforce policy gates at build & deploy

���� Shift-left security Apply security as early in development as possible

���� Security as code
Define policies, scans, and rules in version-controlled
configurations

����� Software Security Maturity Models

Model Purpose

���� BSIMM Benchmarks orgs on 12 security practices (industry standard)

���� OpenSAMM Open-source model to assess & improve software security

Microsoft SDL Maturity Measures how well SDL practices are integrated org-wide

Know that maturity models help teams assess how far along they are in securing software
development.

���� Final Exam Must-Know Summary

���� Concept Why it Matters

SDL adapts to Agile via backlog,
sprints, champions

You'll see this exact adaptation on the test

SDL adapts to DevSecOps via
automation & CI/CD

Must know how testing tools and policies integrate
into build pipelines

Know the 4 deployment
environments and their risks

Will be asked to choose how environment affects
SDL or threat modeling

Understand software maturity
models

May be asked to compare BSIMM vs OpenSAMM or
how they measure org progress

Post-Release Support

Implementing organizational security policies does not happen overnight and may require
negotiation with key stakeholders and organizational leadership. Adapting a reference
framework can help navigate those challenges by relying on proven, tested SDL activities,
deliverables, and methodologies. There is no reason to reinvent the wheel when there are
industry-wide accepted best practices available.

Read chapter 9 "Adapting Our Reference Framework to Your Environment" from Practical
Core Software Security: A Reference Framework to gain a deeper understanding on
reference frameworks.

Reference

Ransome, J., Misra, A. and Merkow, M. (2023). Practical core software security: A reference
framework. CRC Press.
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-
live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

 LESSON 10

Take a moment to think about what you learned in this lesson.

• Your software is most likely to be deployed in Agile, DevOps, Digital Enterprise, or a
combination of those environments.

• Agile development is designed to deliver value faster.

• DevOps teams work together for ongoing operations, enhancements, defect
removal, and optimization of resources.

• Cloud technology has created a rethinking on how applications are built, deployed,
and used.

• Digital enterprises use technology to assist in enabling and improving business
activities.

• Moving to public cloud services has increased security challenges.

• OpenSAMM business functions include governance, construction, verification, and
deployment.

• Building Security in Maturity Model (BSIMM) is a study of existing software security
initiatives used to gather data from larger software development.

https://lrps.wgu.edu/provision/355752469
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=3298314&site=eds-live&scope=site&authtype=sso&custid=ns017578&ebv=EB&ppid=pp_1

• The four types of BSIMM categories are governance, intelligence, software security
development life cycle touchpoints, and deployment.

• Companies can use BSIMM documents to conduct their own assessments.

• Threats can be classified using the STRIDE acronym: spoofing, tampering,
repudiation, information disclosed, denial of service, and elevation of privilege.

Key Terms

• code review (CR): a practice of verification involving review of an organization's
secure code to identify vulnerabilities

• construction: a function of OpenSAMM centered around how organizations define
goals and create software within development projects

• deployment: a function of OpenSAMM centered around how an organization
releases software

• design review (DR): a practice of verification involving inspecting artifacts that were
created from the design process

• digital enterprise: technology used to enable and improve business activities

• education and guidance (EG): a practice of governance involving increasing
security knowledge among software developers

• environment hardening (EH): a practice of deployment involving implementing
controls for the operating environment of an organization's software

• governance: a function of OpenSAMM centered on how organizations manage
overall software development activities

• Open Software Assurance Maturity Model (OpenSAMM): an open framework to
help organizations implement software security tailored to the organization's
specific risks

• Operational Enablement (OE): a practice of deployment involving identifying and
capturing security-relevant information

• policy and compliance (PC): a practice of governance involving setting up security
and compliance control

• secure architecture (SA): a practice of construction involving activities to prompt
secure-by-default designs during the design process

• security requirements (SR): a practice of construction involving the promoting of
inclusion security requirements during software development

• security testing (ST): a practice of verification involving testing the organization's
software in its environment

• strategy and metrics (SM): a practice of governance involving the strategies
regarding software assurance and processes to collect metrics on an organization's
security

• threat assessment (TA): a practice of construction involving identifying and
characterizing potential threats

• verification: a function of OpenSAMM centered around how an organization checks
and tests artifacts produced through software development

• vulnerability management (VM): a practice of deployment involving establishing
processes for managing internal and external vulnerability reports

������ D487 – Chapter 10: Adapting to Security Frameworks and Models

���� Chapter Focus:

How to align the Security Development Lifecycle (SDL) with:

• Organizational practices (Agile, DevSecOps)

• Industry-recognized security frameworks

• Security maturity models

��� Key Takeaways (What You Must Know)

Concept Summary

���� SDL Adaptability
SDL can and must be adapted to Agile, DevOps, Cloud,
Mobile, etc.

Concept Summary

���� Security Frameworks
Use frameworks (like NIST, OWASP, Microsoft SDL) to
guide practices

���� Security Maturity Models
Tools like BSIMM and OpenSAMM measure an org’s SDL
maturity

���� Threat Modeling
Improvements

Enhancing threat models improves risk discovery &
solution planning

��� SDL in Real-World Development Models

���� Agile + SDL Integration

• Security is broken down into backlog tasks

• Add threat modeling and code reviews into each sprint

• Assign a security champion per Agile team

���� DevSecOps + SDL Integration

• Automate scans (SAST, DAST) in the CI/CD pipeline

• Include security policy gates before deployment

• Use “security as code” for consistency and traceability

��������� 4 Key Deployment Environments

Environment Security Focus

���� On-
premises

Full control but full SDL responsibility

���� Cloud Shared responsibility model with provider

���� Hybrid
Combines on-prem + cloud; higher complexity & threat modeling
needed

Environment Security Focus

���� Mobile/IoT Frequent updates, limited controls, and high exposure risk

����� Maturity Models to Know

���� Model Purpose

BSIMM
Benchmarks your org against 12 practices of mature secure
dev

OpenSAMM
Open-source tool to evaluate and improve software security
posture

Microsoft SDL Maturity
Model

Internal Microsoft standard, focuses on process integration

�������� Security Frameworks to Align With

���� Framework Why It’s Important

NIST Cybersecurity Framework
(CSF)

Covers Identify → Protect → Detect → Respond → Recover

OWASP Top 10
List of most common web app vulnerabilities (e.g., XSS,
SQLi, A01–A10)

Microsoft SDL
The model WGU teaches—important to compare with
others

���� Final Exam Tips for Chapter 10

��� Know how to integrate SDL into Agile and DevSecOps

��� Be able to match maturity models (BSIMM, OpenSAMM) to their purpose

��� Be able to identify how deployment environments affect SDL

��� Expect a question on the shared responsibility model (especially in cloud)

��� Study the phases of NIST CSF and OWASP Top 10 relevance to testing phase

�������� D487 – Software Security After Release (Final Phase of SDL)

���� Security Work Doesn't Stop at Release

Just because the code is shipped doesn't mean your security job is over.
Both pre-release and post-release phases are part of a secure software lifecycle.

��� Pre-Release Must-Haves (Before Shipping Product)

Task Purpose

���� Final SDL Checkpoint Ensure ALL SDL steps were completed before go-live

���� Framework & Regulatory
Compliance

Validate compliance with standards (e.g., HIPAA,
GDPR, NIST)

���� Final Vulnerability Scan Use automated tools to catch known flaws

���� Penetration Testing Simulate attacks to test for real-world exploitation

���� Final Security & Privacy
Review

Confirm secure handling of PII, consent, and legal data
storage practices

���� Post-Release Responsibilities (Support Phase)

Once the product is released, the organization must maintain a repeatable and
responsive process to continue security protections.

Post-Release Activity Why It Matters

���� Incident Response Plan
Required to quickly detect and mitigate threats that
surface post-release

���� Customer Communication
Process

Must notify users when their data or security might be
impacted

���� Ongoing Vulnerability
Monitoring

Continuously scan and monitor for newly discovered
flaws or exploits

Post-Release Activity Why It Matters

���� Patch & Remediation
Pipeline

Rapid response to fix known bugs or vulnerabilities

���� Disclosure Policy
Clear external policy for researchers to report
vulnerabilities

���� Final Exam Hot Points

You WILL be tested on:

•
���� SDL activities that must be completed before release

•
���� What needs to happen after release (monitoring, response, patching)

•
���� The difference between vulnerability scans vs. pen testing

•
���� The need for regulatory compliance and privacy checks

•
���� Having a repeatable, documented post-release process

���� Quick Tip:

Use this mental checklist when reviewing release readiness:

��� Compliance = Met

��� Security = Reviewed

��� Privacy = Verified

��� Pen Test = Completed

��� Vulnerabilities = Scanned & resolved

��� Incident Plan = Documented

��� Communication Channels = Ready

COMPLETE CHAPTER REVIEW OF ALL CHAPTERS FROM THE BOOK

���� D487 Secure Software Design – Final Exam Chapter Overview

���� Chapter 1: Introduction to Software Security

•
���� Importance of building security in from the start

•
���� Difference between quality vs. security in code

•
���� Overview of the Security Development Lifecycle (SDL)

•
���� CIA Triad: Confidentiality, Integrity, Availability

•
���� When to apply threat modeling and risk analysis

•
���� SDL vs. SDLC comparison

���� Chapter 2: Core Concepts of Secure Software Design

•
���� STRIDE threat modeling categories

•
���� Data flow diagram (DFD) components:

o External elements = rectangles

o Data store = parallel lines

o Data flow = solid line + arrow

o Trust boundary = dashed line

•
���� Risk rating methodologies (DREAD, CVSS)

•
���� Security objectives and business goals alignment

���� Chapter 3: The Requirements Phase

•
���� Identify security objectives early

•
���� Include regulatory requirements (e.g., HIPAA, GDPR)

•
���� Privacy Impact Rating scale (P0–P3) — P1 = High Risk if handling PII

•
���� Use security checklists, legal policies, and business risk discussions

���� Chapter 4: The Design Phase

•
���� Threat modeling as a mandatory SDL activity

•
���� Use STRIDE to model potential threats

•
���� Define trust boundaries and sensitive data paths

•
���� Document threat scenarios and rank risk levels

•
���� Assign mitigation strategies based on risk rating

���� Chapter 5: The Implementation Phase

•
���� Apply secure coding standards (e.g., input validation, error handling)

•
���� Code reviews – must be done same day as development

•
���� Use static analysis tools (SAST) to find flaws early

•
���� Use secure libraries and frameworks

���� Chapter 6: The Verification Phase

•
���� Dynamic Analysis (DAST) – run against the live app

•
���� Fuzz Testing – send random/malformed input to break stuff

•
���� Manual source code review – catches logic/design errors

•
���� Know the difference between static, dynamic, fuzz, and manual testing

•
���� Security Test Plan – must align with threats and risks

���� Chapter 7: The Release (Ship) Phase

•
���� Final Security Review – last chance to catch flaws

•
���� Final Privacy Review – ensure compliance with data laws

•
���� Policy compliance analysis – sets release gates

•
���� Open-source licensing review

•
���� Pen testing and vulnerability scans must be completed

•
���� Communicate security issues to support teams

���� Chapter 8: Post-Release Support Activities

•
���� External vulnerability disclosure process

•
���� Third-party security reviews

•
���� Post-release certifications (e.g., ISO/IEC 27001)

•
���� Internal reviews for new cloud deployments or integrations

•
���� Security incident response plan

•
���� Any architecture or code change must re-trigger SDL tasks

���� Chapter 9: Assessing Security Readiness

•
���� Criteria for approving a secure release

•
���� How to prioritize and remediate vulnerabilities

•
���� Determine root cause of incidents

•
���� Risk-based mitigation approach

•
���� Incident response: Detect → Contain → Notify → Document

���� Chapter 10: Adapting SDL to Frameworks

•
���� Integrating SDL with Agile: security stories, champions, sprint reviews

•
���� Integrating SDL with DevSecOps: automated scans, shift-left, CI/CD gates

•
���� Security maturity models:

o BSIMM (industry comparison)

o OpenSAMM (open-source improvement model)

•
���� Security frameworks:

o NIST CSF (Identify → Protect → Detect → Respond → Recover)

o OWASP Top 10

o Microsoft SDL

��� Quick Test Strategy:

You Should Be Able To...

���� Match SDL phases to activities and artifacts

���� Recognize security roles in Agile/DevOps

���� Distinguish between static, dynamic, and fuzz testing

���� Identify security responses and post-release support tasks

���� Analyze a threat scenario and recommend the right mitigation

���� Recall privacy risk levels and regulatory concerns

���� Pick the correct tool or framework for a given security need

���� D487 Final Exam – One Page Chapter Overview (Test-Only Focus)

���� Chapter 1: Introduction

•
���� CIA Triad: Confidentiality, Integrity, Availability

•
���� SDL vs SDLC differences

•
���� Security must be built-in from the beginning

•
���� Threat modeling and risk assessment start early

���� Chapter 2: Core Design Concepts

•
���� STRIDE threat model categories

•
���� Data Flow Diagram (DFD) elements:

o Trust boundary = dashed line

o External element = rectangle

o Data flow = solid arrow

o Data store = two parallel lines

•
���� Risk assessment = DREAD or CVSS

���� Chapter 3: Requirements Phase

•
���� Identify security and privacy requirements

•
���� Privacy Impact Ratings:

o P1 = High risk (handles PII)

•
���� Include legal/regulatory compliance (e.g., HIPAA, GDPR)

���� Chapter 4: Design Phase

•
���� Perform threat modeling with STRIDE

•
���� Define trust boundaries, assets, and threats

•
���� Assign mitigations based on risk rating

���� Chapter 5: Implementation Phase

•
���� Follow secure coding standards

•
���� Peer code reviews done same day as code is written

•
���� Use static analysis tools (SAST)

���� Chapter 6: Verification Phase

•
���� Know tool types:

o Static = code without running

o Dynamic = code during execution

o Fuzz = random data inputs

o Manual review = logic & design flaw catching

•
���� Match tools to vulnerability types

���� Chapter 7: Ship Phase

•
���� Final policy compliance analysis = quality gates

•
���� Final security & privacy review

•
���� Vulnerability scanning + Penetration testing

•
���� OSS license review

•
���� Communicate risks to support teams

���� Chapter 8: Post-Release Support

•
���� External vulnerability disclosure process

•
���� Incident response: Detect → Contain → Patch → Notify

•
���� SDL must restart for new deployments/code reuse

•
���� Use tool-based assessments after release

•
���� Third-party security reviews & certifications

���� Chapter 9: Assessing Readiness

•
���� Evaluate if software is secure enough to ship

•
���� Prioritize mitigation based on risk

•
���� Patch vulnerabilities before they impact customers

•
���� Root cause analysis of incidents

���� Chapter 10: Frameworks & Models

•
���� SDL fits into Agile: use security backlog, security champions

•
���� SDL fits into DevSecOps: CI/CD security, automation

•
���� Maturity models:

o BSIMM (benchmark practices)

o OpenSAMM (improvement model)

•
���� Know OWASP Top 10 + NIST CSF functions:

o Identify, Protect, Detect, Respond, Recover

��� Quick SDL Phase Reference Cheat Sheet

SDL Phase What Happens

���� Requirements Define security & privacy goals, identify legal & compliance needs

���� Design Threat modeling, STRIDE, DFDs, architecture risk analysis

����
Implementation

Secure coding, peer review (same day), static analysis (SAST)

���� Verification DAST, fuzzing, manual reviews, full test plan execution

���� Release (Ship)
Final reviews, pen test, OSS review, compliance gates, support
communication

���� Post-Release
Disclosure policy, incident response, 3rd party review, internal
audits, maturity tracking

���� High-Yield Topics That Repeat on the Test

•
���� Code Review Timing: Must be completed within hours or same day after
code is written

•
���� Vulnerability in URL like ?category=2 OR 1=1: = SQL Injection

•
���� Final quality gates are defined in: A5 Policy Compliance Analysis

•
���� If anything changes post-release (cloud migration, reuse, API updates): You
MUST restart SDL

�������� Security Tool Match-Up (Test Trap Section)

Tool Type Purpose

���� Static (SAST)
Scans source code without execution (early phase, automation
friendly)

���� Dynamic
(DAST)

Scans running app, finds runtime bugs (auth issues, input flaws)

���� Fuzzing Random/invalid data input to test crash/overflow/edge cases

���� Manual
Review

Human eyes catch logic/design flaws tools can’t

��������� Testing Types You Need to Know

Testing Type When Used Example

���� Alpha Testing Internal testing before beta Done by developers or QA

���� Beta Testing By real users post-release
Customers test before wide
rollout

���� Unit Testing
Code-level, function-by-
function

Developer checks small code
units

���� Integration
Testing

Connecting multiple
components

APIs, database calls, services

���������� Regulations & Frameworks to Memorize

Item Why It Matters

���� HIPAA/GDPR Must be addressed in privacy reviews

���� NIST CSF 5 functions: Identify, Protect, Detect, Respond, Recover

���� OWASP Top 10
Standard list of common vulnerabilities (XSS, Injection,
Broken Access)

����
BSIMM/OpenSAMM

Maturity models that assess how “security mature” your SDL
is

���� Tips to Avoid Mistakes on the Test

•
�� Don’t confuse mitigation (reduce severity) with remediation (fix it)

•
�� Don't mix up static (pre-execution) and dynamic (runtime) testing

•
��� Always choose the answer that includes legal/privacy/compliance AND
security — not just one

•
��� When in doubt, assume security must be continuous even after release

•
��� Don’t Confuse These SDL Activities
•

����� Policy & Compliance Must-Know

•
���� Policy Compliance Analysis (Ship/A5 Phase) = defines quality gates

•
���� If a release doesn’t meet policy gate: product can’t ship

•
���� Open-source license review = required in Ship phase

•
���� Privacy review = checks for PII handling and laws like HIPAA, GDPR

Easily Confused Correct Mapping

���� Code Review vs Static
Analysis

Code review = human inspection; Static = automated tool

���� Penetration Test vs DAST Pen test = simulated attacker; DAST = scanner analyzing
runtime behavior

���� Threat Modeling vs Risk
Rating

Threat modeling = what could go wrong; Risk rating = how bad
& how likely it is

���� Mitigation vs
Remediation

Mitigation = reduce/lessen risk; Remediation = fix the problem

��� Attack Types & Examples That Show Up

Attack How It Shows Up

���� SQL Injection URL ends in ?id=1 OR 1=1

���� Cross-Site
Scripting

Form or comment box injecting JavaScript (e.g.,
<script>alert(1)</script>)

���� Man-in-the-Middle Intercepting unsecured traffic between client and server

���� Broken Access
Control

Users seeing/editing data they shouldn’t have access to

������� Vulnerability Reporting = Post-Release

•
���� Use a vulnerability disclosure policy

•
���� Must include contact, response time, and fix timeline

•
���� SDL must restart if post-release changes are made (e.g., new feature or
cloud move)

���� Final Exam Traps to Watch For

•
�� If you see “done after release = done with SDL” → WRONG. SDL continues
post-release

•
�� “Static analysis is the same as manual review” → WRONG

•
��� If an answer includes compliance, privacy, AND security → That’s your best
choice

•
�� If there’s no final pen test or scan before release → Reject release

���� Key Tools to Recognize

Tool What It Does

���� SonarQube Static code analysis (SAST)

���� Jenkins CI/CD automation server

���� JIRA Issue/bug tracking

���� Dynatrace AI-based performance monitoring & security

��� Final Sanity Checklist Before You Test:

• Know all SDL phases and what happens in each

• Can tell the difference between SAST, DAST, fuzzing, manual review

• Understand STRIDE & DFD diagram symbols

• Recognize real attack examples (XSS, SQLi)

• Know what happens post-release (support, incident response, disclosure)

• Understand how SDL works inside Agile & DevSecOps

• Familiar with frameworks: OWASP, NIST, HIPAA, GDPR

• Can match tools to tasks (e.g., SonarQube → SAST)

��� Appendix A: Case Study for Chapters 3–8 Exercises

Context Summary:

• The case study is centered around a fictional company Revvin’ Engines, an e-
commerce platform that suffered a major security breach.

• Attackers exploited SQL injection vulnerabilities, gaining full access to credit card
databases.

• Logs reviewed: web logs, server logs, application logs, and Windows Event logs.

• Critical vulnerabilities:

• Lack of secure coding practices

• Inadequate access controls

• Use of dynamically generated SQL queries

• The aftermath included:

• Site and mobile app shutdown

• A full rebuild of the application

• Engagement of security consultants (NoMoreHacks Security Consultants) for
forensic analysis

Lesson Objective of the Case Study:
You are tasked with helping the company implement a strong Security Development
Lifecycle (SDL) that includes:

• Cultural adoption of security practices

• Improved risk assessment

• SDL phases mapped into practical actions

• Drafting deliverables based on the 5 SDL phases (A1 through A5, plus PRSA1-5)

Study Tip: Review how each SDL phase (Ch. 3–8) would be applied to this company’s
situation. Think: What steps would you take if you were the security consultant?

��� Appendix B: Answers to Chapter Quick-Check Questions

This appendix gives the correct answers to the review questions from each chapter.
Examples include:

�� Chapter 1 Sample Answers

1. The cost to fix flaws post-release can be up to:

��� d. 1500 times more than in development.

2. Defective software is:

��� d. A software development and engineering problem

3. The three SDL goals:

��� c. Confidentiality, integrity, and availability (CIA Triad)

4. Best time for threat modeling:

��� b. During product inception/product backlog development

�� Chapter 2 Sample Answers

5. “Building Security In” begins with:

��� c. Specification phase

6. SDL objectives EXCLUDE:

��� c. To eliminate threats to the software (That’s impossible)

7. Principle where entities have only necessary permissions:

��� b. Least privilege

8. BSIMM is defined as:

��� c. Looking for evidence of security activities in the SDLC

���� Chapter Quiz (with Answers)

11. What is the first step in gaining executive buy-in for a software security
program?

a. Start code reviews
b. Build a pilot team

��� c. Show business value of security investment
d. Implement encryption

12. What role do “security champions” play?
a. Do all the security testing
b. Build all the code

��� c. Advocate and model secure development practices
d. Write policy documents

13. Which of the following is NOT a best practice for sustaining an SDL program?
a. Train developers
b. Run periodic metrics

��� c. Replace the dev team every year
d. Use maturity models

14. True or False: A security program should be entirely independent from the
SDLC.

��� False — Integration is key for success.

15. What is a key benefit of using a maturity model like BSIMM?
a. Avoid doing threat modeling

��� b. Measure and improve security practices over time
c. Replace developers
d. Stop using secure code libraries

���� QUIZ QUESTIONS + ANSWERS

5. The following are primary mitigation methods except:

•
�� a. Locking down the environment

•
�� b. Input validation

•
��� c. Use of deprecated libraries for legacy code

•
�� d. Output validation

6. Elements of defensive coding include all except:

•
��� a. Custom cryptographic functions to avoid algorithm disclosure

•
�� b. Exception handling

•
�� c. Interface coding

•
�� d. Cryptographic agility

7. Static analysis checks for:

•
�� a. Thread performance only

•
�� b. Race conditions

•
��� c. Syntax, function calls, memory management

•
�� d. Logic semantics only

8. Automated testing does not have this advantage over manual code review:

•
�� a. Unsafe function detection

•
�� b. Obfuscated routines

•
�� c. Speed

•
��� d. Integration into IDE

Question 1

What is software security?

• Data transmission security by using HTTPS and SSL

• Security that websites use, such as Web Application Firewall to block and monitor

HTTP traffic

• Security that networks use, such as a firewall allowing only intended traffic

• Security that deals with securing the foundational programmatic logic of the

underlying software

Which part of the CIA goals keeps unauthorized users from accessing confidential

information?

• Integrity

• Confidentiality

• Availability

• Information security

What are the three primary tools basic to the security development life cycle?

Choose 3 answers.

• Fuzzing or fuzz testing

• Static analysis testing

• Dynamic analysis testing

• Software security architects

• Measurement model

"Fuzzing or fuzz testing" is correct. Fuzz testing is automated or semi-automated testing that provides
invalid, unexpected, or random data to the computer software program. “Static analysis testing" is correct.
Static analysis analyzes computer software without executing programs.

"Dynamic analysis testing" is correct. Dynamic analysis analyzes computer software while executing

programs.

In which phase of the SDLC should the software security team be involved?

• Planning

• Support and Sustain

• Design and Development

• Release and Launch

• Concept

What determines the order of items in a product backlog in Scrum?

• Order is decided by the Scrum Team

• Order is decided by the ScrumMaster

• Order is decided by the project manager

• Order is decided based on value of the items being delivered

Order is decided based on the value of the item/requirement in the backlog as it helps business when the
item is done and business can start using it. The Product Owner decides the order of items in the backlog.

Why is the Waterfall methodology most useful for smaller projects?

• When a project is smaller, it can easily be turned back upwards after the coding

phase is complete.

• When a project is smaller, the risk of changing requirements and scope is lower.

• When a project is smaller, it doesn't need any time for reflection.

• When a project is smaller, there is an emphasis on empowering teams with

collaborative decision-making.

The Waterfall method works with each stage being clearly defined. The project builds on itself, and in

smaller projects, this creates a clearer and easily definable path.

��� Chapter 1 Questions

1. The costs to remediate security flaws once a software product is released can
run as much as ____ times the cost to fix them in development:

• a. 50

• b. 100

• c. 500

• d. 1500

2. Defective software is:

• a. A network security problem

• b. An operating system security problem

• c. A user-caused problem

• d. A software development and engineering problem

3. The three goals of the security development lifecycle are:

• a. Reliability, efficiency, and maintainability

• b. Speed, quality, and continuous releases

• c. Confidentiality, integrity, and availability

• d. Availability, reliability, and portability

4. Threat modeling and attack surface analysis is most effective when conducted:

• a. Post-release

• b. During product inception/product backlog development

• c. During integration testing

• d. Prior to code development/commitment

��� Chapter 2 Questions

5. The paradigm of Building Security In begins with the:

• a. Analysis phase

• b. Design phase

• c. Specification phase

• d. Development phase

6. The objectives of SDL are to achieve all except:

• a. Reduce the number of vulnerabilities

• b. Reduce severity of vulnerabilities

• c. Eliminate threats

• d. Document a complete understanding of vulnerabilities

7. The principle that an object has only the necessary rights/privileges is:

• a. Layered security

• b. Least privilege

• c. Role-based security

• d. Clark-Wilson model

8. Which statement best describes BSIMM?

• a. BSIMM is used to measure the maturity of a software assurance program by
looking for evidence of security best practices in the SDLC

• b. … by looking for security procedures

• c. … by looking for evidence of security activities in the SDLC

• d. … by looking for security requirements

��� Chapter 3 Question

9. The purpose of the discovery meeting is to:

• a. Discover who is on the development team

• b. Discover what budgets/resources are available

• c. Discover how security can be built into the process from the start

• d. Discover which platforms/languages will be used

What are the two common best principles of software applications in the
development process? Choose 2 answers.

• Quality code
• Secure code
• Information security
• Integrity
• Availability

"Quality code" is correct. Quality code is efficient code that is easy to maintain and reusable.

"Secure code" is correct. Secure code authorizes and authenticates every user transaction, logs the
transaction, and denies all unauthorized requisitions.

What ensures that the user has the appropriate role and privilege to view data?

• Authentication
• Multi-factor authentication
• Encryption
• Information security
• Authorization

Authorization ensures a user's information and credentials are approved by the system.

Which security goal is defined by "guarding against improper information modification
or destruction and ensuring information non-repudiation and authenticity"?

• Integrity
• Quality
• Availability
• Reliability

The data must remain unchanged by unauthorized users and remain reliable from the data entry point to the
database and back.

Which phase in an SDLC helps to define the problem and scope of any existing
systems and determine the objectives of new systems?

• Requirements
• Design
• Planning
• Testing

The planning stage sets the project schedule and looks at the big picture.

What happens during a dynamic code review?

• Programmers monitor system memory, functional behavior, response times,
and overall performance.

• Customers perform tests to check software meets requirements.
• An analysis of computer programs without executing them is performed.
• Input fields are supplied with unexpected input and tested.

This describes dynamic code review.

How should you store your application user credentials in your application database?

• Use application logic to encrypt credentials
• Store credentials as clear text
• Store credentials using Base 64 encoded
• Store credentials using salted hashes

Hashing is a one-way process that converts a password to ciphertext using hash algorithms.
Password salting adds random characters before or after a password prior to hashing to obfuscate
the actual password.

Which software methodology resembles an assembly-line approach?

• V-model
• Agile model
• Iterative model
• Waterfall model

Waterfall model is a continuous software development model in which the development steps flow
steadily downwards.

Which software methodology approach provides faster time to market and higher
business value?

• Iterative model
• Waterfall model
• V-model
• Agile model

In the agile model, projects are divided into small incremental builds that provide working software
at the end of each iteration and adds value to business.

In Scrum methodology, who is responsible for making decisions on the requirements?

• Scrum Team
• Product Owner
• ScrumMaster
• Technical Lead

The Product Owner is responsible for requirements/backlog items and prioritizing them.

What is the product risk profile?

• A security assessment deliverable that lists education requirements for product and
operations teams

• A security assessment deliverable that maps activities to the development schedule
• A security assessment deliverable that guides SDL activities to mitigate issues
• A security assessment deliverable that estimates the actual cost of the product

Looking at products from different perspectives allows management to determine the actual cost of
a product, which includes selling it in different markets, and liabilities that might be incurred.

A software security team member has been tasked with creating a deliverable that
provides details on where and to what degree sensitive customer information is
collected, stored, or created within a new product offering.

What does the team member need to deliver in order to meet the objective?

• Threat profile
• Privacy impact assessment
• Metrics template
• SDL project plan

The PIA is a process that evaluates issues and privacy impact rating in relation to the privacy of
personally identifiable information in the software.

• A software security team member has been tasked with creating a threat model
for the login process of a new product.
What is the first step the team member should take?

• Identify threats
• Survey the application
• Decompose the application
• Identify security objectives

What are three parts of the STRIDE methodology?
Choose 3 answers.

• Spoofing
• Elevation
• Tampering
• Trike
• Threat source
• Vulnerability

Why:
STRIDE is a threat modeling framework developed by Microsoft, with six core categories:

| S | Spoofing identity
| T | Tampering with data
| R | Repudiation
| I | Information Disclosure
| D | Denial of Service (DoS)
| E | Elevation of Privilege

Trike, Vulnerability, and Threat Source are not STRIDE categories.

What is the reason software security teams host discovery meetings with stakeholders early
in the development life cycle?

• To determine how much budget is available for new security tools
• To meet the development team
• To refactor functional requirements to ensure security is included
• To ensure that security is built into the product from the start

To correctly and cost-effectively introduce security into the software development life cycle, it needs to be
done early.

Why should a security team provide documented certification requirements during the
software assessment phase?

• Certification is required if the organization wants to move to the cloud.
• Depending on the environment in which the product resides, certifications may be

required by corporate or government entities before the software can be released to
customers.

• By ensuring software products are certified, the organization is protected from future
litigation.

• By ensuring all developers have security certifications before writing any code, teams can
forego discovery sessions.

Any new product may need to be certified based on the data it stores, the frameworks it uses, or the
domain in which it resides. Those certification requirements need to be analyzed and documented early in
the development life cycle.

What are two items that should be included in the privacy impact assessment plan
regardless of which methodology is used?
Choose 2 answers.

• Required process steps
• Technologies and techniques
• SDL project outline
• Threat modeling
• Post-implementation signoffs

"Required process steps" is correct. Required process steps explain in more detail which requirements
are relevant to developers, detailing what types of data are considered sensitive and how they need to be
protected.

What are the goals of each SDL deliverable?
Product risk profile

Answer: Estimate the actual cost of the product

SDL Project Outline?
Answer: Map Security Activities to the development schedule

 Threat Profile?
Answer: Guide Security activities to protect the product from vulnerabilities

 List third-party software?
Answer: Identify dependence on unmanaged software

What is a threat action that is designed to illegally access and use another person's
credentials?

• Tampering
• Spoofing
• Elevation of privilege
• Information disclosure

Spoofing is a threat action that occurs when the cyber criminal acts as a trusted device to get you
to relay secure information.

What are two steps of the threat modeling process?

Choose 2 answers.

• Survey the application

• Decompose the application

• Redesign the process to eliminate the threat

• Transfer the risk

• Identify business requirements

"Survey the application" is correct. Surveying the application is a way to gain knowledge of how the
product works by reading product documentation and interviewing the development team.

"Decompose the application" is correct. Decomposing the application can be done by doing a deep dive
into the code and understanding how it works behind the scenes.

Which shape indicates each type of flow diagram element?

External elements:

Answer: Rectangle

Data Store?

Answer: Two parallel horizontal lines

Data Flow?

Answer: Solid Line with an arrow

Trust Boundary:

Answer: DASHED LINE

What are the two deliverables of the Architecture phase of the SDL?
Choose 2 answers.

• Threat modeling artifacts
• Policy compliance analysis
• Information disclosure
• Attack modeling
• Application decomposition

"Threat modeling artifacts" is correct. Threat modeling artifacts include data flow diagrams, technical
threat modeling reports, high-level executive threat modeling reports, and recommendations for threat
analysis.
"Policy compliance analysis" is correct. Policy compliance analysis is a report on compliance with security
and non-security policies of the organization.

What SDL security assessment deliverable is used as an input to an SDL architecture
process?

• SDL project outline
• Certification requirements
• Product risk profile
• Threat profile

Threat profiles created in the Security Assessment phase are used to build the environment in
which the product will operate and will include potential threats in order to determine how to avoid
them in the final application.

Which software security testing technique tests the software from an external
perspective?

• Source code analysis
• White box
• Gray box
• Black box

Black box testing tests with no prior knowledge of the software. During this phase, only binary
executable or intermediate byte code is analyzed.

Which security design principle states that an entity should be given the minimum
privileges and resources for a minimum period of time for a task?

• Defense in depth
• Least privilege
• Economy of mechanism
• Separation of duties

By providing the least amount of privilege, opportunities for unauthorized access to sensitive
information are eliminated.

LESSON 7 QUIZ

After the developer is done coding a functionality, when should code review be
completed?

�� Correct Answer: Within hours or the same day

Code reviews are most effective when done immediately after coding, to catch issues early and
reduce context switching.

What is the order that code reviews should follow in order to be effective?

Step 1: Plan the review

Identify security Code Review objectives

Step 2: Perform the review

Perform a Preliminary scan

Step 3: Record defects

Review code for security issues

Step 4: Fix defects and verify

Review for security issues unique to the architecture

��� D487 Code Review Process Table

Step Phase Description

1
Identify Security Code
Review Objectives

Define scope, goals, and constraints. Focus on specific
threats (e.g., auth, input validation).

2 Perform Preliminary Scan
Run static analysis tools to detect obvious or known
security flaws automatically.

3
Review Code for Security
Issues

Manually inspect code for vulnerabilities (e.g., XSS,
SQLi, insecure crypto, logic errors).

4
Review for Architecture-
Specific Issues

Analyze for flaws unique to the app’s architecture (e.g.,
broken trust boundaries, insecure design).

��� D487 Quiz – Questions and Correct Answers

Question 1:
When a software application handles personally identifiable information (PII) data, what
will be the Privacy Impact Rating?

�� Answer: P1: High privacy risk

Question 2:
Which key success factor identifies threats to the software?

�� Answer: Effective threat modeling

Question 3:
What is the goal of design security review deliverables?

�� Answer: To make modifications to the design of software components based on
security assessments

Question 4:
Which application scanner component is useful in identifying vulnerabilities such as
cookie misconfigurations and insecure configuration of HTTP response headers?

�� Answer: Passive scanner

Question 5:
Which type of attack occurs when an attacker uses malicious code in the data sent in a
form?

�� Answer: Cross-site scripting

Question 6:
Which tools provide the given functions?

6a: Self-managed, automatic code review product

�� Answer: SonarQube

6b: Open-source automation server

�� Answer: Jenkins

6c: Proprietary issue tracking product

�� Answer: JIRA

6d: AI-powered management solution

�� Answer: Dynatrace

Question 7:
A new application is released, and users perform initial testing on the application.
Which type of testing are the users performing?

�� Answer: Beta testing

Question 8:
What is a non-system-related component in software security testing attack surface
validation?

�� Answer: Users

Question 9:
When an application's input validation is not handled properly, it could result in which kind
of vulnerabilities?

�� Answer: SQL injection, cross-site scripting

Question 10:
What are the advantages of the following security analysis tools?

10a: Static code analysis

�� Answer: Access to the actual instructions the software will be guessing

10b: Dynamic code analysis

�� Answer: Tests a specific operational deployment

10c: Fuzz testing

�� Answer: Testing in a random approach

10d: Manual source code review

�� Answer: Requires no supporting technology

Which activity in the Ship (A5) phase of the security development cycle sets
requirements for quality gates that must be met before release?

�� Answer: A5 policy compliance analysis

���� This step ensures security policy alignment and defines required quality/security
gates before release approval.

The company's website uses querystring parameters to filter products by category.
The URL, when filtering on a product category, looks like this:
company.com/products?category=2.

If the security team saw a URL of company.com/products?category=2 OR 1=1 in the
logs, what assumption should they make?

�� Answer: An attacker is attempting to use SQL injection to gain access to information.

���� This is a classic SQL Injection pattern. OR 1=1 always returns true, potentially exposing
data.

Which post-release support activity (PRSA) details the process for investigating,
mitigating, and communicating findings when security vulnerabilities are discovered
in a software product?

�� Correct Answer: External vulnerability disclosure response

���� This activity defines how vulnerabilities discovered after release are tracked,
investigated, mitigated, and disclosed to stakeholders or customers.

Which post-release support key success factor says that any change or component
reuse should trigger security development life cycle activities?

�� Correct Answer: SDL cycle for any architectural changes or code reuses

���� This ensures that any new deployment, reuse, or architectural change (e.g., moving
to cloud, combining systems) triggers a fresh round of SDL tasks (threat modeling, review,
etc.).

Which step will you find in the SANS Institute Cyber Defense seven-step recipe for
conducting threat modeling and application risk analysis?

�� Answer: Brainstorm threats from adversaries

���� This is part of the SANS model. It emphasizes identifying potential adversaries and how
they might exploit the system.

In which OpenSAMM core practice area would one find environment hardening?

�� Answer: Deployment

���� Environment hardening (e.g., server config, firewalls, patching) is part of the
Deployment phase in OpenSAMM.

CHAPTER 10 QUIZ

1/ Which practice in the Ship (A5) phase of the security development cycle verifies
whether the product meets security mandates?

�� Correct Answer: A5 policy compliance analysis

���� Explanation: This ensures products meet internal and external requirements, including quality
gates and SDL activities.

2/ Which post-release support activity defines the process to communicate, identify,
and alleviate security threats?

�� Correct Answer: PRSA1: External vulnerability disclosure response

���� Explanation: This step defines how an organization discloses, evaluates, mitigates, and
communicates post-release vulnerabilities.

3/ What are two core practice areas of the OWASP Security Assurance Maturity Model
(OpenSAMM)?

�� Correct Answers:

• Governance

• Construction

���� Explanation: Governance manages policies and organizational practices. Construction
deals with secure coding and dev practices.

4/ Which practice in the Ship (A5) phase of the security development cycle uses tools
to identify weaknesses in the product?

�� Correct Answer: Vulnerability scan

���� Explanation: Automated tools detect known weaknesses based on signature databases.

5/ Which post-release support activity should be completed when companies are
joining together?

�� Correct Answer: Internal review

���� Explanation: Internal reviews validate security and architecture during integrations or mergers.

6/ Match each Ship (A5) activity with its action

6a. A5 Policy compliance analysis

�� Answer: Analyze activities and standards

���� Explanation: Ensures SDL activities and quality gates were completed at each phase.

6b. Code-assisted penetration testing

�� Answer: White-box security test

���� Explanation: Simulates a hacker using knowledge of the system to find vulnerabilities.

6c. Open-source licensing review

�� Answer: License compliance

���� Explanation: Confirms all OSS components are compliant and won’t delay release.

6d. Final security review

�� Answer: Release and ship

���� Explanation: Final testing (including regression tests) confirms security readiness for
shipping.

7/ Match SDL implementation by environment

7a. Agile

�� Answer: Iterative development

���� Explanation: Agile uses short development cycles and evolves through collaboration.

7b. DevOps

�� Answer: Continuous integration and continuous deployment

���� Explanation: DevOps emphasizes automation and real-time feedback throughout development
and delivery.

7c. Cloud

�� Answer: API invocation processes

���� Explanation: Cloud applications rely on dynamic APIs and data exchange mechanisms.

7d. Digital enterprise

�� Answer: Enables and improves business activities

���� Explanation: Focuses on digitizing business processes to drive performance and scalability.

Question 8

Which phase of penetration testing allows for remediation to be performed?

�� Correct Answer: Assess

���� Explanation: The Assess phase executes the test and allows time for fixing discovered
issues.

Question 9

Which key deliverable occurs during post-release support?

�� Correct Answer: Third-party reviews

���� Explanation: Security audits from external groups validate the product post-launch.

10/ Match OpenSAMM core practices to business functions

10a. Governance

�� Answer: Policy and compliance

���� Explanation: Manages security policies, controls, and audits.

10b. Construction

�� Answer: Threat assessment

���� Explanation: Involves identifying and characterizing threats in the codebase.

10c. Verification

�� Answer: Code review

���� Explanation: Manual or tool-based review of source code to detect flaws.

10d. Deployment

�� Answer: Vulnerability management

���� Explanation: Involves handling both internal and external reports of vulnerabilities.

	 Practical Core Software Security
	 🔄 Don’t Confuse These SDL Activities
	

